scholarly journals Reduction of Dynamics with Lie Group Analysis

2012 ◽  
Vol 2012 ◽  
pp. 1-17 ◽  
Author(s):  
M. Iwasa

This paper is mainly a review concerning singular perturbation methods by means of Lie group analysis which has been presented by the author. We make use of a particular type of approximate Lie symmetries in those methods in order to construct reduced systems which describe the long-time behavior of the original dynamical system. Those methods can be used in analyzing not only ordinary differential equations but also difference equations. Although this method has been mainly used in order to derive asymptotic behavior, when we can find exact Lie symmetries, we succeed in construction of exact solutions.

2021 ◽  
Vol 0 (0) ◽  
pp. 0
Author(s):  
Junwei Feng ◽  
Hui Liu ◽  
Jie Xin

<p style='text-indent:20px;'>In a bounded domain, we study the long time behavior of solutions of the stochastic three-component Gray-Scott system with multiplicative noise. We first show that the stochastic three-component Gray-Scott system can generate a non-autonomous random dynamical system. Then we establish some uniform estimates of solutions for stochastic three-component Gray-Scott system with multiplicative noise. Finally, the existence of uniform and cocycle attractors is proved.</p>


2014 ◽  
Vol 2014 ◽  
pp. 1-8
Author(s):  
Guolian Wang

We investigate the long time behavior of the damped, forced KdV-BO equation driven by white noise. We first show that the global solution generates a random dynamical system. By energy type estimates and dispersive properties, we then prove that this system possesses a weak random attractor in the spaceH1(ℝ).


Author(s):  
Richard Rand ◽  
Albert Barcilon ◽  
Tina Morrison

We investigate the dynamics of a system consisting of a simple, harmonic oscillator with small nonlinearity, small damping and small parametric forcing in the neighborhood of 2:1 resonance. We assume that the unforced system exhibits the birth of a stable limit cycle as the damping changes sign from positive to negative (a supercritical Hopf bifurcation). Using perturbation methods and numerical integration, we investigate the changes which occur in long-time behavior as the damping parameter is varied. We show that for large positive damping, the origin is stable, whereas for large negative damping a quasiperiodic behavior occurs. These two steady states are connected by a complicated series of bifurcations which occur as the damping is varied.


2020 ◽  
Vol 2020 (1) ◽  
Author(s):  
Xiaopeng Zhao

AbstractIn this paper, we study the long time behavior of solution for the initial-boundary value problem of convective Cahn–Hilliard equation in a 2D case. We show that the equation has a global attractor in $H^{4}(\Omega )$ H 4 ( Ω ) when the initial value belongs to $H^{1}(\Omega )$ H 1 ( Ω ) .


2021 ◽  
pp. 1-27
Author(s):  
Ahmad Makki ◽  
Alain Miranville ◽  
Madalina Petcu

In this article, we are interested in the study of the well-posedness as well as of the long time behavior, in terms of finite-dimensional attractors, of a coupled Allen–Cahn/Cahn–Hilliard system associated with dynamic boundary conditions. In particular, we prove the existence of the global attractor with finite fractal dimension.


Sign in / Sign up

Export Citation Format

Share Document