scholarly journals Construction of Tungsten Halogen, Pulsed LED, and Combined Tungsten Halogen-LED Solar Simulators for Solar CellI-VCharacterization and Electrical Parameters Determination

2012 ◽  
Vol 2012 ◽  
pp. 1-9 ◽  
Author(s):  
Anon Namin ◽  
Chaya Jivacate ◽  
Dhirayut Chenvidhya ◽  
Krissanapong Kirtikara ◽  
Jutturit Thongpron

I-Vcharacterization of solar cells is generally done under natural sunlight or solar simulators operating in either a continuous mode or a pulse mode. Simulators are classified on three features of irradiance, namely, spectral match with respect to air mass 1.5, spatial uniformity, and temporal stability. Commercial solar simulators use Xenon lamps and halogen lamps, whereas LED-based solar simulators are being developed. In this work, we build and test seven simulators for solar cell characterization, namely, one tungsten halogen simulator, four monochromatic (red, green, blue, and white) LED simulators, one multicolor LED simulator, and one tungsten halogen-blue LED simulator. The seven simulators provide testing at nonstandard test condition. High irradiance from simulators is obtained by employing elevated supply voltage to tungsten halogen lamps and high pulsing voltages to LEDs. This new approach leads to higher irradiance not previously obtained from tungsten halogen lamps and LEDs. FromI-Vcurves, electrical parameters of solar cell are made and corrected based on methods recommended in the IEC 60891 Standards. Corrected values obtained from non-STC measurements are in good agreement with those obtained from Class AAA solar simulator.

2013 ◽  
Vol 3 (2) ◽  
pp. 77
Author(s):  
Maya Komalasari ◽  
Teuku Fawzul Akbardan ◽  
Bambang Sunendar

Pada penelitian ini dilakukan sintesis nanopartikel TiO2 menggunakan metode sol-gel dengan pelarut air. Pada proses sintesis ditambahkan kitosan dengan konsentrasi 0; 2,5; 5; dan 10% v/v. TiO2hasil sintesis kemudian dikarakterisasi dengan menggunakan SEM, XRD, dan BET  untuk mengetahui morfologi,  struktur kristal, dan karakteristik pori. Selain itu keempat variasi TiO2diaplikasikan sebagai foto elektroda DSSC. Karakterisasi DSSC dilakukan dengan menggunakan solar simulator AM 1,5 untuk mengetahui karakteristik I-V DSSC. Hasil karakterisasi menunjukkan penambahan kitosan pada konsentrasi rendah (2,5% v/v) mengurangi fasa anatase pada kristal  TiO2dan cenderung memperbesar ukuran kristalit. Penambahan kitosan melebihi 5% meningkatkan fasa anatase dan memperkecil ukuran kristalit. Konsentrasi kitosan 2,5% memperkecil luas permukaan spesifik partikel dan volume total pori. Peningkatan konsentrasi kitosan memberi hasil sebaliknya. Performa DSSC terbaik didapat pada TiO2 dengan konsentrasi kitosan 2,5% saat sintesis, dengan Voc = 0,58 V, Jsc = 0,74 mA/cm , dan η = 0,51%.Kata kunci: titanium dioksida, Dye Sensitized Solar Cell, kitosan


2021 ◽  
Vol 13 (4) ◽  
pp. 2086
Author(s):  
Bartłomiej Milewicz ◽  
Magdalena Bogacka ◽  
Krzysztof Pikoń

The methods of production of electricity from renewable sources are currently highly researched topics. The reason for this is growing social awareness regarding the environmental impact of traditional energy technologies. The main aim of this study is to describe the results of using silicon cell technology and dye concentrator in a single system. The experiment presented in the paper was conducted in a laboratory environment using a dye concentrator in the form of tinted and luminescent acrylic glass (polymethyl methacrylate, PMMA). The experiment was conducted using a few measurement calibrations for the described system, such as different temperatures of the researched silicon cell or different intensity of illuminance from a solar simulator. The results of the experiment showed increase in the performance of the solar cell between 0.05% and 1.42% depending on the pigments used in the concentrator. The highest results were achieved for luminescent red PMMA and on average the improvement was 1.21%. This shows us the potential for the implementation of a luminescent dye concentrator in solar electric technology.


Crystals ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 726
Author(s):  
Ray-Hua Horng ◽  
Yu-Cheng Kao ◽  
Apoorva Sood ◽  
Po-Liang Liu ◽  
Wei-Cheng Wang ◽  
...  

In this study, a mechanical stacking technique has been used to bond together the GaInP/GaAs and poly-silicon (Si) solar wafers. A GaInP/GaAs/poly-Si triple-junction solar cell has mechanically stacked using a low-temperature bonding process which involves micro metal In balls on a metal line using a high-optical-transmission spin-coated glue material. Current–voltage measurements of the GaInP/GaAs/poly-Si triple-junction solar cells have carried out at room temperature both in the dark and under 1 sun with 100 mW/cm2 power density using a solar simulator. The GaInP/GaAs/poly-Si triple-junction solar cell has reached an efficiency of 24.5% with an open-circuit voltage of 2.68 V, a short-circuit current density of 12.39 mA/cm2, and a fill-factor of 73.8%. This study demonstrates a great potential for the low-temperature micro-metal-ball mechanical stacking technique to achieve high conversion efficiency for solar cells with three or more junctions.


2021 ◽  
Vol 56 (5) ◽  
pp. 583-594
Author(s):  
Napat Watjanatepin ◽  
Paiboon Kiatsookkanatorn

Despite the continuous trend of an LED solar simulator development, there was little to be found in the application of a phosphor-converted natural white LED (pc-nWLED) for construction. This article reported the design and construction of an LED solar simulator which combined a pc-nWLED with infrared LEDs. The objectives of this study are to determine the performance of a novel solar simulator including non-uniformity (SNE), temporal stability (TIE), and spectrum mismatch (SM). This is followed by an experimental study of the correlation between the LED’s temperature and SNE. A spectroradiometer, pyranometer, and a custom-made non-uniformity measurement system were applied to test the performance characteristics of this solar simulator. The results indicated that the proposed solar simulator could achieve the AAA class. The results showed 0.90-1.08 of SM, 0.83% TIE, and 1.34% of SNE. The SNE indicated the positive significant correlation with the LED’s temperature, with an approximate of +0.043% per °C. A good cooling system for the LED module was necessary to maintain constant light uniformity. The blue-chip phosphor converted white LED combination with color mixed of 730 nm, 850 nm, and 940 nm could emit a light spectrum that was very close to the reference spectrum of about 99.6%.


2013 ◽  
Vol 54 ◽  
pp. 131-137 ◽  
Author(s):  
Anon Namin ◽  
Chaya Jivacate ◽  
Dhirayut Chenvidhya ◽  
Krissanapong Kirtikara ◽  
Jutturit Thongpron

2019 ◽  
Vol 40 (5) ◽  
pp. 635-642
Author(s):  
李 超 LI Chao ◽  
邵剑波 SHAO Jian-bo ◽  
席 曦 XI Xi ◽  
朱益清 ZHU Yi-qing ◽  
刘桂林 LIU Gui-lin ◽  
...  

2019 ◽  
Vol 2019 ◽  
pp. 1-7
Author(s):  
Tchouadep Guy Serge ◽  
Zouma Bernard ◽  
Korgo Bruno ◽  
Soro Boubacar ◽  
Savadogo Mahamadi ◽  
...  

The aim of this work is to study the behaviour of a silicon solar cell under the irradiation of different fluences of high-energy proton radiation (10 MeV) and under constant multispectral illumination. Many theoretical et experimental studies of the effect of irradiation (proton, gamma, electron, etc.) on solar cells have been carried out. These studies point out the effect of irradiation on the behaviour of the solar cell electrical parameters but do not explain the causes of these effects. In our study, we explain fundamentally the causes of the effects of the irradiation on the solar cells. Taking into account the empirical formula of diffusion length under the effect of high-energy particle irradiation, we established new expressions of continuity equation, photocurrent density, photovoltage, and dynamic junction velocity. Based on these equations, we studied the behaviour of some electronic and electrical parameters under proton radiation. Theoretical results showed that the defects created by the irradiation change the carrier distribution and the carrier dynamic in the bulk of the base and then influence the solar cell electrical parameters (short-circuit current, open-circuit voltage, conversion efficiency). It appears also in this study that, at low fluence, junction dynamic velocity decreases due to the presence of tunnel defects. Obtained results could lead to improve the quality of the junction of a silicon solar cell.


Sign in / Sign up

Export Citation Format

Share Document