scholarly journals Correlation between Quantumchemically Calculated LUMO Energies and the Electrochemical Window of Ionic Liquids with Reduction-Resistant Anions

2012 ◽  
Vol 2012 ◽  
pp. 1-6 ◽  
Author(s):  
Wim Buijs ◽  
Geert-Jan Witkamp ◽  
Maaike C. Kroon

Quantum chemical calculations showed to be an excellent method to predict the electrochemical window of ionic liquids with reduction-resistant anions. A good correlation between the LUMO energy and the electrochemical window is observed. Surprisingly simple but very fast semiempirical calculations are in full record with density functional theory calculations and are a very attractive tool in the design and optimization of ionic liquids for specific purposes.

Materials ◽  
2021 ◽  
Vol 14 (10) ◽  
pp. 2560
Author(s):  
Jianwen Meng ◽  
Yong Pan ◽  
Fan Yang ◽  
Yanjun Wang ◽  
Zhongyu Zheng ◽  
...  

The thermal stability and decomposition kinetics analysis of 1-alkyl-2,3-dimethylimidazole nitrate ionic liquids with different alkyl chains (ethyl, butyl, hexyl, octyl and decyl) were investigated by using isothermal and nonisothermal thermogravimetric analysis combined with thermoanalytical kinetics calculations (Kissinger, Friedman and Flynn-Wall-Ozawa) and density functional theory (DFT) calculations. Isothermal experiments were performed in a nitrogen atmosphere at 240, 250, 260 and 270 °C. In addition, the nonisothermal experiments were carried out in nitrogen and air atmospheres from 30 to 600 °C with heating rates of 5, 10, 15, 20 and 25 °C/min. The results of two heating modes, three activation energy calculations and density functional theory calculations consistently showed that the thermal stability of 1-alkyl-2,3-dimethylimidazolium nitrate ionic liquids decreases with the increasing length of the alkyl chain of the substituent on the cation, and then the thermal hazard increases. This study could provide some guidance for the safety design and use of imidazolium nitrate ionic liquids for engineering.


2021 ◽  
Vol 17 ◽  
pp. 2450-2461
Author(s):  
Najeh Tka ◽  
Mohamed Adnene Hadj Ayed ◽  
Mourad Ben Braiek ◽  
Mahjoub Jabli ◽  
Peter Langer

A facile synthesis of 2,4-diaryl-9-chloro-5,6,7,8-tetrahydroacridine derivatives is reported which is based on POCl3-mediated cyclodehydration followed by double Suzuki–Miyaura cross-coupling. The absorption and fluorescence properties of the obtained products were investigated and their HOMO/LUMO energy levels were estimated by cyclic voltammetry measurements. Besides, density functional theory calculations were carried out for further exploration of their electronic properties.


2014 ◽  
Vol 68 (3) ◽  
Author(s):  
Ali Peyghan ◽  
Maziar Noei

AbstractThe functionalisation of C60 fullerene with 2,3-dimethylene-1,4-dioxane (I) and 2,5-dioxabicyclo [4.2.0]octa-1(8),6-diene (II) was investigated by the use of density functional theory calculations in terms of its energetic, structural, field emission, and electronic properties. The functionalisation of C60 with I was previously reported experimentally. The I and II molecules are preferentially attached to a C—C bond shared and located between two hexagons of C60 via [4+2] and [2+2] cycloadditions bearing reaction energies of −15.9 kcal mol−1 and −72.4 kcal mol−1, respectively. The HOMO-LUMO energy gap and work function of C60 are significantly reduced following completion of the reactions. The field electron emission current of the C60 surface will increase after functionalisation of either the I or II molecule.


2015 ◽  
Vol 13 (31) ◽  
pp. 8453-8464 ◽  
Author(s):  
Karim Engelmark Cassimjee ◽  
Bianca Manta ◽  
Fahmi Himo

The detailed half-transamination mechanism of Chromobacterium violaceum ω-transaminase is investigated by means of density functional theory calculations.


Sign in / Sign up

Export Citation Format

Share Document