scholarly journals Application of Box-Behnken Design in Optimization of Glucose Production from Oil Palm Empty Fruit Bunch Cellulose

2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
Satriani Aga Pasma ◽  
Rusli Daik ◽  
Mohamad Yusof Maskat ◽  
Osman Hassan

Oil palm empty fruit bunch fiber (OPEFB) is a lignocellulosic waste from palm oil mills. It contains mainly cellulose from which glucose can be derived to serve as raw materials for valuable chemicals such as succinic acid. A three-level Box-Behnken design combined with the canonical and ridge analysis was employed to optimize the process parameters for glucose production from OPEFB cellulose using enzymatic hydrolysis. Organosolv pretreatment was used to extract cellulose from OPEFB using ethanol and water as the solvents. The extracted cellulose was characterized by thermogravimetric analysis, FTIR spectroscopy, and field emission scanning electron microscopy. Hydrolysis parameters including amount of enzyme, amount of cellulose, and reaction time were investigated. The experimental results were fitted with a second-order polynomial equation by a multiple regression analysis and found that more than 97% of the variations could be predicted by the models. Using the ridge analysis, the optimal conditions reaction time found for the production of glucose was 76 hours and 30 min, whereas the optimum amount of enzyme and cellulose was 0.5 mL and 0.9 g, respectively. Under these optimal conditions, the corresponding response value predicted for glucose concentration was 169.34 g/L, which was confirmed by validation experiments.

2020 ◽  
Vol 16 (1) ◽  
pp. 37
Author(s):  
H. A. Oramahi ◽  
Farah Diba ◽  
Rizka Diah Permana

In this work medang wood (Cinnamomum spp.) was pyrolyzed to produces wood vinegar. The effect of several parameters including the wood particle size, pyrolysis temperature, and pyrolysis time on the pyrolysis efficiency was tested to identify the optimal wood vinegar production conditions. The efficient response surface methodology (RSM) with the Box-Behnken design (BBD) was used for modeling and optimization of the process parameters. RSM used three variable designs namely particle size of wood of 2.38, 3.36, and 4.76 mm, respectively, pyrolysis temperature of 370, 400 and 430°C, respectively, and pyrolysis times 90, 120 and 150 minutes, respectively, with the total of 15 experimental runs. The responses of the BBD fitted with a second-order polynomial equation, illustrating the wood vinegar yield was Y = 15.20 + 0.31 X1 + 5.00 X2 + 0.48 X3 – 1.84 X12 – 1.18 X22 + 0.63 X1.X2 + 0.35 X1.X3 + 0.31 X2.X3 – 0.27 X3.X3.  The optimal conditions found to be at the particle size of wood, pyrolysis temperature, and pyrolysis time were 4.76 mm, 475 °C, 195 minutes, respectively, and yield of wood vinegar was 22.90%.


2020 ◽  
Vol 115 (8) ◽  
pp. 301-308
Author(s):  
Asgarifard Pourya ◽  
Tafreshi Navid ◽  
Sharifi Akbar

Unhairing is one of the major steps of the leather tanning process which removes the hairs, epidermis and to some degree inter-fibrillary proteins. This process needs high amounts of chemicals that cause environmental difficulties. On the other hand, these chemicals are available in the wastewater of the Merox unit of Kermanshah Refinery. For reducing chemical consumption and decreasing environment pollution, we used the aforementioned wastewater for bovine unhairing. A unhairing liquor was prepared in order to unhair skins and different parameters such as the concentration of CaCO3 and Na2S, process time, and temperature were considered to evaluate their impact on the unhairing process and to obtain optimum condition. Response surface methodology based on Box-Behnken design was applied to model the unhairing efficiency in terms of four independent variables. A second-order polynomial equation was suggested to predict the response with high certainty. ANOVA revealed the validity and importance of that model by P-value of < 0.0001, large F-values, and, R2 of 98.8. The maximum unhairing efficiency of about 98.5 % was obtained under the optimum condition of 1.7 wt% Na2S, 5.8 wt% CaCO3, 114 min process time and 29.5 ºC.


2018 ◽  
Vol 38 ◽  
pp. 02010
Author(s):  
Fang Dong ◽  
Hailong Qiu ◽  
Shaoqian Jia ◽  
Cuiping Dai ◽  
Qingxin Kong ◽  
...  

This paper investigated the optimizing extraction processing of chitin from procambarus clarkia shell by Box-Behnken design. Firstly, four independent variables were explored in single factor experiments, namely, concentration of hydrochloric acid, soaking time, concentration of sodium hydroxide and reaction time. Then, based on the results of the above experiments, four factors and three levels experiments were planned by Box-Behnken design. According to the experimental results, we harvested a second-order polynomial equation using multiple regression analysis. In addition, the optimum extraction process of chitin of the model was obtained: concentration of HCl solution 1.54mol/L, soaking time 19.87h, concentration of NaOH solution 2.9mol/L and reaction time 3.54h. For proving the accuracy of the model, we finished the verification experiment under the following conditions: concentration of hydrochloric acid 1.5mol/L, soaking time 20h, concentration of sodium hydroxide 3mol/L and reaction time 3.5h. The actual yield of chitin reached 18.76%, which was very close to the predicted yield (18.66%) of the model. The result indicated that the optimum extraction processing of chitin was feasible and practical.


2016 ◽  
Vol 2016 ◽  
pp. 1-6
Author(s):  
Jingzhi Wu ◽  
Min Qiao ◽  
Zhifeng Lyu ◽  
Qianping Ran

Using maltodextrin (MD) of different dextrose equivalent (DE) values, 1,3-propanesultone, and maleic anhydride as raw materials, a novel binary modified maltodextrin (BMMD) was synthesized and further applied as a water-reducing agent. Its structure was characterized by Fourier transform infrared (FT-IR) and UV. The rheological behavior of the sample solution and strengths for concrete were also determined and the adsorption was tested by TOC. The influence of the process parameters to degree of substitution (DS) and the dosage on the fluidity of cement paste were investigated. The results show that the optimal conditions of sulfonation were the MD of DE 15, m (sulfonated agent)/m (MD) of 1.4, the catalyst amount of 1% by mass MD, and the reaction time of 12 h; the optimal conditions of esterification were m (esterified agent)/m (SMD) of 0.6, the reaction temperature of 90°C, and the reaction time of 4 h. The optimal dosages of sulfonated maltodextrin (SMD) and BMMD were 0.475% and 0.45%, respectively. In this dosage, the main dispersion capacity of BMMD attributes to two kinds of anchoring groups (SO3-  &  COO-) and the appropriate molecular weight of MD.


2011 ◽  
Vol 239-242 ◽  
pp. 279-282 ◽  
Author(s):  
Juan Qin Xue ◽  
Jing Xian Li ◽  
Ming Wu ◽  
Wei Wang ◽  
Dong Ni Ma

Using formaldehyde as a crosslinking reagena novel cross-linked chitosan resin was synthesized by orthogonal. The resin material with good properties of sphericity and acidresistivity can be prepared under the optimal experimental conditions, which are found to be 1:6 for the ratio of chitosan and formaldehyde, 60°C for the temperature, 1 h for the reaction time, 640r/min for the stirring rate and 9 for the pH, and the cross-linking rate under the optimal conditions is 401.86%. SEM shows the surface morphology changes of raw materials and products; IR of the raw materials and products shows that the reaction occurs mainly on the amino and the hydroxyl of chitosan, and TG shows that the crosslinking reaction of chitosan can change its heat resistance.


BioResources ◽  
2017 ◽  
Vol 12 (3) ◽  
Author(s):  
Nasrullah Razali ◽  
Md. Sohrab Hossain ◽  
Owolabi Abdulwahab Taiwo ◽  
Mazlan Ibrahim ◽  
Nur Wahidah Mohd Nadzri ◽  
...  

2013 ◽  
Vol 67 (12) ◽  
pp. 2706-2711 ◽  
Author(s):  
Juan Wang ◽  
Yuan Cao ◽  
Qin Zhong

The aim of this study was to investigate optimum conditions for biological removal of flue gas pretreatment wastewater and achieve maximum elemental sulfur yield. A three-factor, three-level Box–Behnken design was used to derive a second-order polynomial equation and construct contour plots to predict responses. The independent variables selected were hydraulic retention time (X1), inlet sulfate concentration (X2), and air flow (X3). Fifteen batches were done in a biological united system and evaluated for elemental sulfur yield (Y1). The transformed values of the independent variables and Y1 were subjected to a full-model second-order polynomial equation. The equation was modified based on Fisher's F- and probability P-values. The computer optimization process and contour plots predicted the values of independent variables X1, X2 and X3 (16 h, 1,348 mg L−1 and 165 L h−1 respectively), for maximized response of Y1. The experimental results at predicted conditions demonstrate that the modified model equation has good applicability to the practical system.


2013 ◽  
Vol 800 ◽  
pp. 537-545
Author(s):  
Jian Ping Xu ◽  
Zhi Huang ◽  
Yan Ling Gao

In this study, the Box–Behnken design matrix and response surface methodology (RSM) have been applied in the experiments to evaluate the interactive effects of four most important operating variables: pH (2.0–4.0), temperature (30–40°C ),iron/carbon ratio(1/2–3/2)and iron carbon amounts (2-4) on the removal of Pb (II), Cu(II),Zn (II) and Cd (II) ions in acid mine drainage with micro-electrolysis (ME) . The total 29 experiments were conducted in the present study for the construction of a quadratic model. The independent variables have significant value 0.0001, which indicates the importance of these variables in the ME process. The values of “Prob > F” less than 0.0500 indicate that model terms are significant for the removal of Cr (VI), Ni (II) and Zn (II) ions. The regression equation coefficients were calculated and the data fitted to a second-order polynomial equation for removal of Pb (II), Cu(II),Zn (II) and Cd (II) ions with ME.


2013 ◽  
Vol 699 ◽  
pp. 77-82 ◽  
Author(s):  
S. Duangwang ◽  
C. Sangwichien

Oil palm empty fruit bunch is a lignocellulosic material from palm oil plantations. It is a potential source of xylose which can be used as a raw material for production of xylitol. Using of lignocellulosic waste for bioconversion to fuels and chemicals is justifiable as these materials are low cost, renewable and widespread sources of sugars. The objective of the present study was to determine the effect of H2SO4 concentration, reaction temperature and reaction time for acid hydrolysis of pretreated OPEFB, pretreated OPEFB with reaction temperature, reaction time and NaOH concentration were 130 °C, 40 min and 15% (w/v), respectively to achieve high xylose yield. Batch reactions were carried out under various reaction temperature, reaction time and H2SO4 concentration. Response Surface Methodology (RSM) was followed to optimize acid hydrolysis in order to obtain high yield of xylose. The optimum reaction temperature, reaction time and H2SO4 concentration were found to be 140 °C, 90 min and 7% (w/v), respectively. The maximum value of xylose was obtained 56.39 g/l by using the above condition. The best result of xylose yield obtained was 126%.


Materials ◽  
2020 ◽  
Vol 13 (5) ◽  
pp. 1245 ◽  
Author(s):  
Farah Nadia Mohammad Padzil ◽  
Seng Hua Lee ◽  
Zuriyati Mohamed Asa’ari Ainun ◽  
Ching Hao Lee ◽  
Luqman Chuah Abdullah

Oil palm empty fruit bunch (OPEFB) is considered the cheapest natural fiber with good properties and exists abundantly in Malaysia. It has great potential as an alternative main raw material to substitute woody plants. On the other hand, the well-known polymeric hydrogel has gathered a lot of interest due to its three-dimensional (3D) cross-linked network with high porosity. However, some issues regarding its performance like poor interfacial connectivity and mechanical strength have been raised, hence nanocellulose has been introduced. In this review, the plantation of oil palm in Malaysia is discussed to show the potential of OPEFB as a nanocellulose material in hydrogel production. Nanocellulose can be categorized into three nano-structured celluloses, which differ in the processing method. The most popular nanocellulose hydrogel processing methods are included in this review. The 3D printing method is taking the lead in current hydrogel production due to its high complexity and the need for hygiene products. Some of the latest advanced applications are discussed to show the high commercialization potential of nanocellulose hydrogel products. The authors also considered the challenges and future direction of nanocellulose hydrogel. OPEFB has met the requirements of the marketplace and product value chains as nanocellulose raw materials in hydrogel applications.


Sign in / Sign up

Export Citation Format

Share Document