The Optimization of Pb(II),Cu(II),Zn(II) and Cd(II) Ions Removal by Micro-Electrolysis Using Response Surface Methodology

2013 ◽  
Vol 800 ◽  
pp. 537-545
Author(s):  
Jian Ping Xu ◽  
Zhi Huang ◽  
Yan Ling Gao

In this study, the Box–Behnken design matrix and response surface methodology (RSM) have been applied in the experiments to evaluate the interactive effects of four most important operating variables: pH (2.0–4.0), temperature (30–40°C ),iron/carbon ratio(1/2–3/2)and iron carbon amounts (2-4) on the removal of Pb (II), Cu(II),Zn (II) and Cd (II) ions in acid mine drainage with micro-electrolysis (ME) . The total 29 experiments were conducted in the present study for the construction of a quadratic model. The independent variables have significant value 0.0001, which indicates the importance of these variables in the ME process. The values of “Prob > F” less than 0.0500 indicate that model terms are significant for the removal of Cr (VI), Ni (II) and Zn (II) ions. The regression equation coefficients were calculated and the data fitted to a second-order polynomial equation for removal of Pb (II), Cu(II),Zn (II) and Cd (II) ions with ME.

2017 ◽  
Vol 68 (2) ◽  
pp. 331-336
Author(s):  
Gabriela Isopencu ◽  
Mirela Marfa ◽  
Iuliana Jipa ◽  
Marta Stroescu ◽  
Anicuta Stoica Guzun ◽  
...  

Nigella sativa, also known as black cumin, an annual herbaceous plant growing especially in Mediterranean countries, has recently gained considerable interest not only for its use as spice and condiment but also for its healthy properties of the fixed and essential oil and its potential as a biofuel. Nigella sativa seeds fixed oil, due to its high content in linoleic acid followed by oleic and palmitic acid, could be beneficial to human health. The objective of this study is to determine the optimum conditions for the solvent extraction of Nigella sativa seeds fixed oil using a three-level, three-factor Box-Behnken design (BBD) under response surface methodology (RSM). The obtained experimental data, fitted by a second-order polynomial equation were analysed by Pareto analysis of variance (ANOVA). From a total of 10 coefficients of the statistical model only 5 are important. The obtained experimental values agreed with the predicted ones.


2018 ◽  
Vol 8 (1) ◽  
pp. 31-42
Author(s):  
M. Amimour ◽  
T. Idoui ◽  
A. Cheriguene

The Aim of this study was to develop an optimized method for manufacturing process of traditional Algerian Jben cheese, using response surface methodology (RSM). In order to develop the objective method of making this traditional cheese, several factors have been studied and a Plackett-Burman statistical design was applied. The effects of the four screened factors (enrichment with milk powder, 10 - 20 g/l; pH of milk, 5.75 - 6.75, enzymatic extract dose, 0.5 - 1.5 ml and coagulation temperature 40 - 60 °C) on the response were investigated, using a Box-Behnken statistical design. Multiple regression analysis was used so that experimental data fits to a second-order polynomial equation. This multiple analysis showed that the model explains about 90.73% of the variation. Based on statistical results, it can be noticed that enrichment with milk powder and pH of milk (Ë‚0.0001***) were highly significant factor influincing cheese yield. The optimal production parame-ters that maximized cheese product (20 g/l enrichment with milk powder, 5.75 pH of milk, 1.29 ml enzymatic extract dose and 60°C coagulation temperature) and the maximal predicted cheese yield (52.68 % ) were found out through response surface methodology. Under these conditions, a verification experiment was carried out and cheese yield was found to be 49.46 %. The overall percentage of agreement for the experimental results (more than 93 % validity) with the predicted values indicates the validation of the statistical model and the success of the optimization process.


2020 ◽  
Vol 27 (2) ◽  
pp. 47-56
Author(s):  
A.O. Okewale ◽  
O.A. Adesina ◽  
B.H. Akpeji

Effect of Terminalia catappa leaves (TCL) extract in inhibiting corrosion of mild steel was investigated. In order to obtain the maximum inhibition efficiency, optimization of the process variables affecting corrosion of mild steel was carried out using the Box – Behnken Design plan and desirability function of Response Surface Methodology (RSM). The three parameters - varied include; TCL concentration (inhibitor), immersion time, and temperature and there effects in corrosion inhibition were established. The optimum conditions predicted from the quadratic model were inhibitor’s concentratrion (0.39 g/l), exposure time (8.68 hours), and temperature (36.06 oC) with the inhibition efficiency of 91.95 %. The data fitted well to the quadratic model which was validated. Adsorption of the extract’s component on the mild steel was responsible for the inhibitory effect of the TCL extract.The results showed that 97.92% of the total variation in the inhibition efficiency of TCL can be connected to the variables studied. Keywords: Mild steel, acid, Terminalia catappa, Corrosion, Response surface methodology (RSM).


2014 ◽  
Vol 875-877 ◽  
pp. 1637-1641
Author(s):  
Arrisa Sopajarn ◽  
Chayanoot Sangwichien

The purpose of this work is to develop a pretreatment process of lingo-cellulosic ethanol production from narrow leaves cattail (Typha angustifolia) by using alkali catalysis with the response surface methodology (RSM) as a central composite design (CCD). The first step, LiOH, NaOH, and KOH were used as catalytic alkali for preliminary test. Second, the suitable alkali from first step was selected to optimize of pretreatment condition of three independent variables (alkali concentration, temperature, and residence time) that varies at CCD five codes (-2, -1, 0, 1, 2). Sodium hydroxide (NaOH) is the proper alkali because it could increase cellulose more than KOH and nearby LiOH while it is cheapest. RSM result shows the optimized pretreatment condition based on cellulose increased which obtained from this study that is NaOH 5 % w/v at 100 °C and residence time for 120 min. Beside, this condition was analyzed using an ANOVA with a second order polynomial equation after eliminated non-significant terms. At the optimized conditions, cellulose increased, hemicellulose decreased and weight recovery were achieved 77.81%, 80.59, and 41.65%, respectively. Moreover, the model was reasonable to predict the response of strength with less than 5% error.


2022 ◽  
Vol 51 (4) ◽  
pp. 733-742
Author(s):  
Anastasia Novikova ◽  
Liubov Skrypnik

Introduction. Commercial pectin is usually obtained from apples or citrus fruits. However, some wild fruits, such as hawthorn, are also rich in pectin with valuable nutritional and medical properties. The research objective was to study and improve the process of combined surfactant and enzyme-assisted extraction of pectin from hawthorn fruits. Study objects and methods. The study involved a 1% solution of Polysorbate-20 surfactant and a mix of two enzymes, namely cellulase and xylanase, in a ratio of 4:1. The response surface methodology with the Box-Behnken experimental design improved the extraction parameters. The experiment featured three independent variables – temperature, time, and solvent-to-material ratio. They varied at three levels: 20, 40, and 60°C; 120, 180, and 240 min; 15, 30, and 45 mL per g. Their effect on the parameters on the pectin yield was assessed using a quadratic mathematical model based on a second order polynomial equation. Results and discussion. The response surface methodology made it possible to derive a second order polynomial regression equation that illustrated the effect of extraction parameters on the yield of polyphenols. The regression coefficient (R2 = 98.14%) and the lack-of-fit test (P > 0.05) showed a good accuracy of the model. The optimal extraction conditions were found as follows: temperature = 41°C, time = 160 min, solvent-to-material ratio = 32 mL per 1 g. Under the optimal conditions, the predicted pectin yield was 14.9%, while the experimental yield was 15.2 ± 0.4%. The content of galacturonic acid in the obtained pectin was 58.5%, while the degree of esterification was 51.5%. The hawthorn pectin demonstrated a good complex-building ability in relation to ions of copper (564 mg Cu2+/g), lead (254 mg Pb2+/g), and cobalt (120 mg Co2+/g). Conclusion. Combined surfactant and enzyme-assisted extraction made improved the extraction of pectin from hawthorn fruits. The hawthorn pectin can be used to develop new functional products.


2014 ◽  
Vol 12 (2) ◽  
pp. 164-172 ◽  
Author(s):  
Pengpeng Qiu ◽  
Mingcan Cui ◽  
Kyounglim Kang ◽  
Beomguk Park ◽  
Yonggyu Son ◽  
...  

AbstractA combined ultrasound (US)/H2O2 process was used to oxidize arsenite to arsenate, yielding a synergistic effect value of 1.26. This showed that the combined process could be an effective method of oxidizing arsenite, instead of using either ultrasonic or H2O2 oxidation processes. This combined process was successfully modeled and optimized using a Box-Behnken design with response surface methodology (RSM). The effects of the US power density, the initial concentration of arsenite, and the H2O2 concentration on the sonochemical oxidation efficiency of arsenite were investigated. Analysis of variance indicated that the proposed quadratic model successfully interpreted the experimental data with coefficients of determination of R 2 = 0.95 and adjusted R 2 = 0.91. Through this model, we can predict and control the oxidation efficiency under different conditions. Furthermore, the optimal conditions for the oxidation of arsenite were found to be a US power density of 233.26 W L−1, an initial arsenite concentration of 0.5 mg L−1, and an H2O2 concentration of 74.29 mg L−1. The predicted oxidation efficiency obtained from the RSM under the optimal conditions was 88.95%. A confirmation test of the optimal conditions verified the validity of the model, yielding an oxidation efficiency of 90.1%.


Materials ◽  
2021 ◽  
Vol 14 (21) ◽  
pp. 6596
Author(s):  
Nguyen Thuy Chung ◽  
Yoon-Sik So ◽  
Woo-Cheol Kim ◽  
Jung-Gu Kim

External damage to buried pipelines is mainly caused by corrosive components in soil solution. The reality that numerous agents are present in the corrosive environment simultaneously makes it troublesome to study. To solve that issue, this study aims to determine the influence of the combination of pH, chloride, and sulfate by using a statistical method according to the design of experiment (DOE). Response surface methodology (RSM) using the Box–Behnken design (BBD) was selected and applied to the design matrix for those three factors. The input corrosion current density was evaluated by electrochemical tests under variable conditions given in the design matrix. The output of this method is an equation that calculates the corrosion current density as a function of pH, chloride, and sulfate concentration. The level of influence of each factor on the corrosion current density was investigated and response surface plots, contour plots of each factor were created in this study.


2013 ◽  
Vol 850-851 ◽  
pp. 1133-1136
Author(s):  
Ni Na Bao ◽  
Yong Guang Yin ◽  
Quan Kai Wang

In this study the extraction of ganglioside from the lipid soluble fraction of sika deer antler was investigated using response surface methodology (RSM). A three-level Box-Behnken design which was based on the results of a single-factor test was employed to optimize the parameters for extraction of ganglioside. The experimental results were fitted with a second-order polynomial equation by a multiple regression analysis. By solving the regression equation and also by analyzing the response surface contour plots, the optimal ganglioside extraction conditions were determined: ratio of liquid to raw material 11, temperature 40°C and time 7min, and the maximum yield of ganglioside extraction was 1.25%.


2014 ◽  
Vol 17 (2) ◽  
pp. 47-55
Author(s):  
Loan Thi Bich Nguyen ◽  
Huong Thuy Nguyen

In the past, optimization in biological analyses has been performed by measuring influence of one factor at a time. The disadvantage of this technique is not presence any interactive effects of factors studies and it needs a large number of experiments. Consequently, the Response Surface Methodology (RSM) is the most popular choice for optimization. It used the effects of mathematics and statistics to study optimization with minimum experimental trials and therefore interactive variables may be involved. This study has selected and screened seven Bacillus strain in Vietnam Type Culture Collection which can product cellulase in the medium with CMC as an inducer. VTCC-B-0497 presented the best result. Then, only 15 experiments of design matrix by Box-Behnken were necessary to determine optimal concentrations of three variables including the concentration of Carboxymethylcellulose, Yeast extract and Meat extract to product cellulase. The model could be employed to predict the response. The maximum of cellulase activity was 2.48 U at the concentration of Carboxymethylcellulose 0.25% w/v, yeast extract 0.7% w/v and meat extract 0.2% w/v.


2019 ◽  
Vol 26 (3) ◽  
pp. 19-30
Author(s):  
Owolabi Rasheed Uthman ◽  
Akinjide Akinola ◽  
Mohammed Awwal Usman ◽  
Abubakar Adepitan

The mole ratio of an acid base reaction is one of the important values to state the stoichiometric relationship between acids and bases. However, solving acid-base problems based on stoichiometry is still challenging for new chemists.This issue renders the use of a model for predicting the volume of the acid used an exciting endeavour in academia. This work was to study the individual and interactive effects of the titration parameters such as acid concentration, base concentration and the number of the indicator drops on the volume of acid used in the titration process, using methyl orange as an indicator.We also aimed to study the central composite design (CCD) model of response surface methodology (RSM) for experimental design and modelling of the process. The experimental data were analysed using analysis of variance (ANOVA) and fitted to a second-order polynomial equation using multiple regression analysis. The regression analysis showed a good fit of the experimental data to the second-order polynomial model with a coefficient of determination (R2) value of 0.9751 and model F-value of 43.37. The response surface and contour plots were generated from RSM tool for the interactive effects of the studied parameters on the volume of acid used. The developed model was further validated using existing acid-base titration problems from the Senior Secondary Certificate Examination (SSCE) past questions over 30 years. All observations indicated that the developed model was only valid for a monobasic acid.


Sign in / Sign up

Export Citation Format

Share Document