scholarly journals Shear Bond Strength of Orthodontic Brackets and Disinclusion Buttons: Effect of Water and Saliva Contamination

2013 ◽  
Vol 2013 ◽  
pp. 1-6 ◽  
Author(s):  
Maria Francesca Sfondrini ◽  
Danilo Fraticelli ◽  
Paola Gandini ◽  
Andrea Scribante

Purpose. The aim of this study was to assess the effect of water and saliva contamination on the shear bond strength and failure site of orthodontic brackets and lingual buttons.Materials and Methods. 120 bovine permanent mandibular incisors were randomly divided into 6 groups of 20 specimens each. Both orthodontic brackets and disinclusion buttons were tested under three different enamel surface conditions: (a) dry, (b) water contamination, and (c) saliva contamination. Brackets and buttons were bonded to the teeth and subsequently tested using a Instron universal testing machine. Shear bond strength values and adhesive failure rate were recorded. Statistical analysis was performed using ANOVA and Tukey tests (strength values) and Chi squared test (ARI Scores).Results. Noncontaminated enamel surfaces showed the highest bond strengths for both brackets and buttons. Under water and saliva contamination orthodontic brackets groups showed significantly lower shear strengths than disinclusion buttons groups. Significant differences in debond locations were found among the groups under the various enamel surface conditions.Conclusions. Water and saliva contamination of enamel during the bonding procedure lowers bond strength values, more with orthodontic brackets than with disinclusion buttons.

2015 ◽  
Vol 39 (4) ◽  
pp. 348-357 ◽  
Author(s):  
RM Agarwal ◽  
R Yeluri ◽  
C Singh ◽  
AK Munshi

Objective: To suggest Papacarie® as a new deproteinizing agent in comparison with indigenously prepared 10% papain gel before and after acid etching that may enhance the quality of the bond between enamel surface and composite resin complex. Study design: One hundred and twenty five extracted human premolars were utilized and divided into five groups: In the group 1, enamel surface was etched and primer was applied. In group 2, treatment with papacarie® for 60 seconds followed by etching and primer application. In group 3, etching followed by treatment with papacarie® for 60 seconds and primer application. In group 4, treatment with 10% papain gel for 60 seconds followed by etching and primer application. In group 5, etching followed by treatment with 10% papain gel for 60 seconds and primer application . After bonding the brackets, the mechanical testing was performed using a Universal testing machine. The failure mode was analyzed using an adhesive remnant index. The etching patterns before and after application of papacarie® and 10% papain gel was also evaluated using SEM. The values obtained for shear bond strength were submitted to analysis of variance and Tukey test (p < 0.05). Results: It was observed that group 2 and group 4 had the highest shear bond strength and was statistically significant from other groups (p=0.001). Regarding Adhesive remnant index no statistical difference was seen between the groups (p=0.538). Conclusion: Papacarie® or 10% papain gel can be used to deproteinize the enamel surface before acid etching to enhance the bond strength of orthodontic brackets.


2013 ◽  
Vol 2013 ◽  
pp. 1-6 ◽  
Author(s):  
Andrea Scribante ◽  
Maria Francesca Sfondrini ◽  
Danilo Fraticelli ◽  
Paola Daina ◽  
Alessandra Tamagnone ◽  
...  

Objective. The aim of this study was to compare the shear bond strength (SBS) and adhesive remnant index (ARI) scores of no-primer adhesives tested with two different bracket bases.Materials and Methods. 120 bovine permanent mandibular incisors were divided into 6 groups of 20 specimens. Two brackets (ODP) with different bracket bases (anchor pylons and 80-gauge mesh) were bonded to the teeth using a conventional adhesive (Transbond XT) and two different no-primer adhesive (Ortho Cem; Heliosit) systems. Groups were tested using an instron universal testing machine. SBS values were recorded. ARI scores were measured. SEM microphotographs were taken to evaluate the pattern of bracket bases. Statistical analysis was performed. ANOVA and Tukey tests were carried out for SBS values, whereas a chi-squared test was applied for ARI scores.Results. Highest bond strength values were reported with Transbond XT (with both pad designs), Ortho Cem bonded on anchor pylons and Heliosit on 80-gauge mesh. A higher frequency of ARI score of “3” was reported for Transbond XT groups. Other groups showed a higher frequency of ARI score “2” and “1.”Conclusion. Transbond XT showed the highest shear bond strength values with both pad designs.


2014 ◽  
Vol 15 (6) ◽  
pp. 688-692 ◽  
Author(s):  
Sukumaran Anil ◽  
Farouk Ahmed Hussein ◽  
Mohammed Ibrahim Hashem ◽  
Elna P Chalisserry

ABSTRACT Objective The purpose of the current in-vivo study was to assess the effect of using 0.12% chlorhexidine (CHX) mouth rinse, before bonding, on shear bond strength of polycarbonate brackets bonded with composite adhesive. Subjects and methods Eighteen orthodontic patients with a mean age 21.41 ± 1.2 years, who were scheduled to have 2 or more first premolars extracted, were included in this study. Patients were referred for an oral prophylaxis program which included, in part, the use of a mouth rinse. Patients were divided into 2 groups, a test group of 9 patients who used 0.12% CHX gluconate mouth rinse twice daily and a control group of 9 patients who used a mouth rinse without CHX, but with same color. After 1 week, polycarbonate brackets were bonded to first premolars with Transbond XT composite adhesive. Premolars were extracted after 28 days and tested for shear bond strength on a universal testing machine. Student's t-test was used to compare shear bond strengths of both groups. Results No statistically significant difference was found in bond strengths’ values between both groups. The test group (with CHX) has mean shear bond strength of 14.21 ± 2.42 MPa whereas the control group (without CHX) revealed a mean strength of 14.52 ± 2.31 MPa. Conclusion The use of 0.12% CHX mouth rinse, for one week before bonding, did not affect the shear bond strength of polycarbonate brackets bonded with Transbond composite. Furthermore, these brackets showed clinically acceptable bond strength. How to cite this article Hussein FA, Hashem MI, Chalisserry EP, Anil S. The Impact of Chlorhexidine Mouth Rinse on the Bond Strength of Polycarbonate Orthodontic Brackets. J Contemp Dent Pract 2014;15(6):688-692.


2018 ◽  
Vol 29 (2) ◽  
pp. 128-132 ◽  
Author(s):  
Gabriela Cristina Santin ◽  
Alexandra Mussolino de Queiroz ◽  
Regina Guenka Palma-Dibb ◽  
Harley Francisco de Oliveira ◽  
Paulo Nelson Filho ◽  
...  

Abstract Patients undergoing radiotherapy treatment present more susceptibility to dental caries and the use of an orthodontic device increases this risk factor due to biofilm accumulation around the brackets. The objective of this study was to evaluate the shear bond strength to irradiated permanent teeth of orthodontic brackets bonded with conventional glass ionomer cement and resin-modified glass ionomer cement due to the fluoride release capacity of these materials. Ninety prepared human premolars were divided into 6 groups (n=15), according to the bonding material and use or not of radiation: CR: Transbond XT composite resin; RMGIC: Fuji Ortho LC conventional glass ionomer cement; GIC: Ketac Cem Easymix resin-modified glass ionomer cement. The groups were irradiated (I) or non-irradiated (NI) prior to bracket bonding. The specimens were subjected to a fractioned radiation dose of 2 Gy over 5 consecutive days for 6 weeks. After the radiotherapy, the brackets were bonded on the specimens with Transbond XT, Fuji Ortho LC and Ketac Cem Easymix. After 24 h, the specimens were subjected to shear bond strength test. The image of enamel surface (classified by Adhesive Remnant Index - ARI) was also evaluated and its frequency was checked among groups/subgroups. The shear bond strength variable was evaluated with ANOVA and Tukey’s post-hoc test. GIC group showed the lowest adhesion values among the groups (p<0.05). There was no statistically significant difference among non-irradiated and irradiated groups (p>0.05). As for the ARI, the CR-I group showed the highest material retention on enamel surface among the irradiated groups. RMGIC group showed the highest values for shear bond strength and presented ARI acceptable for clinical practices.


2017 ◽  
Vol 22 (4) ◽  
pp. 47-52 ◽  
Author(s):  
Marina Cumerlato ◽  
Eduardo Martinelli de Lima ◽  
Leandro Berni Osorio ◽  
Eduardo Gonçalves Mota ◽  
Luciane Macedo de Menezes ◽  
...  

ABSTRACT Objective: The aim of this in vitro study was to evaluate and compare the effects of grinding, drilling, sandblasting, and ageing prefabricated teeth (PfT) on the shear bond strength (SBS) of orthodontic brackets, as well as the effects of surface treatments on the adhesive remnant index (ARI). Methods: One-hundred-ninety-two PfT were divided into four groups (n = 48): Group 1, no surface treatment was done; Group 2, grinding was performed with a cylindrical diamond bur; Group 3, two drillings were done with a spherical diamond bur; Group 4, sandblasting was performed with 50-µm aluminum oxide. Before the experiment, half of the samples stayed immersed in distilled water at 37oC for 90 days. Brackets were bonded with Transbond XT and shear strength tests were carried out using a universal testing machine. SBS were compared by surface treatment and by ageing with two-way ANOVA, followed by Tukey’s test. ARI scores were compared between surface treatments with Kruskal-Wallis test followed by Dunn’s test. Results: Surface treatments on PfT enhanced SBS of brackets (p< 0.01), result not observed with ageing (p= 0.45). Groups II, III, and IV showed higher SBS and greater ARI than the Group 1 (p< 0.05). SBS was greater in the groups 3 and 4 (drilling, sandblasting) than in the Group 2 (grinding) (p< 0.05). SBS and ARI showed a positive correlation (Spearman’s R2= 0.57; p< 0.05). Conclusion: Surface treatment on PfT enhanced SBS of brackets, however ageing did not show any relevance. Sandblasting and drilling showed greater SBS than grinding. There was a positive correlation between SBS and ARI.


2019 ◽  
Vol 13 (2) ◽  
pp. 103-108
Author(s):  
Serdar Akarsu ◽  
Suleyman Kutalmış Buyuk ◽  
Ahmet Serkan Kucukekenci

Background. The temperature might affect the physical and mechanical properties of adhesive materials by reducing the polymerization rate. The present study aimed to evaluate the effect of temperature on the shear bond strength of metallic orthodontic brackets using various adhesive resin systems. Methods. Extracted human premolar teeth were randomly assigned to 8 groups (n=10) for bonding with the two available orthodontics adhesive systems (Transbond XT and NeoBond) at different temperatures: refrigeration temperature (4°C), room temperature (20°C), human body temperature (36°C) and high temperature (55°C). The shear bond strength (SBS) test was performed using a universal testing machine at a crosshead speed of 0.5 mm/min. The adhesive remnant index (ARI) was assigned to the fractured orthodontic brackets. Data were analyzed with one-way ANOVA, post hoc Tukey tests and independent t-test. Results. Transbond XT exhibited higher SBS values compared to Neobond at all the tested temperatures; however, a statistically significant difference was not observed (P>0.05). The SBS results were minimum at 4°C and maximum at 36°C in both the adhesive groups (P<0.05). Conclusion. Pre-heating orthodontic adhesives up to the body temperature prior to bonding the brackets in orthodontic treatment increased the bond strength of orthodontic brackets.


2003 ◽  
Vol 123 (6) ◽  
pp. 633-640 ◽  
Author(s):  
Vittorio Cacciafesta ◽  
Maria Francesca Sfondrini ◽  
Marco De Angelis ◽  
Andrea Scribante ◽  
Catherine Klersy

2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Yomna A. Nabawy ◽  
Tarek N. Yousry ◽  
Nadia M. El-Harouni

Abstract Background Increased risk of enamel demineralization during and after orthodontic treatment raises the demand for better preventive measures including combinations of laser, CPP-ACP, and fluoride. The combination of Er,Cr:YSGG laser with CPP-ACP was proved to have a synergetic effect compared to each of them alone. Shear bond strength (SBS) of orthodontic brackets bonded to the enamel surface after being treated with preventive measures is critical. The aim of this study was to compare the SBS and failure mode of metallic brackets bonded to teeth with no pretreatment and pretreated enamel surface, either with Er,Cr:YSGG laser alone or combined with CPP-ACP. Methods Sixty sound extracted human premolar teeth were allocated randomly to 3 groups: In Group 1 (control), teeth were etched and bonded directly; in Group 2, laser pretreatment of the enamel surface was done followed by etching and bonding as in the control group; in Group 3, the enamel surface was lased then CPP-ACP was applied according to the manufacturer instructions, etched and bonded. SBS and Adhesive remnant index (ARI) were evaluated. Results No significant differences were found between the 3 groups neither in the SBS nor in the ARI scores. Conclusions The use of combined Er,Cr:YSGG laser with CPP-ACP as a preventive measure before bonding orthodontic brackets does not endanger the bracket’s bonding strength.


Sign in / Sign up

Export Citation Format

Share Document