scholarly journals The Serum IL-6 Profile and Treg/Th17 Peripheral Cell Populations in Patients with Type 1 Diabetes

2013 ◽  
Vol 2013 ◽  
pp. 1-7 ◽  
Author(s):  
Monika Ryba-Stanisławowska ◽  
Maria Skrzypkowska ◽  
Jolanta Myśliwska ◽  
Małgorzata Myśliwiec

IL-6 is a pleiotropic cytokine involved in the regulation of the immune response, inflammation, and hematopoeisis. Its elevated levels are found in a range of autoimmune and chronic inflammatory diseases. IL-6 is also involved in regulation of the balance between two T cell subsets: Tregs and Th17, which have contradictory functions in the control of inflammation. The present study provides a quantitative analysis regarding the Th17/Treg cell balance in peripheral blood of children with type 1 diabetes and its association with serum IL-6 level.

Diabetologia ◽  
2021 ◽  
Author(s):  
Robin Assfalg ◽  
Jan Knoop ◽  
Kristi L. Hoffman ◽  
Markus Pfirrmann ◽  
Jose Maria Zapardiel-Gonzalo ◽  
...  

Abstract Aims/hypothesis Oral administration of antigen can induce immunological tolerance. Insulin is a key autoantigen in childhood type 1 diabetes. Here, oral insulin was given as antigen-specific immunotherapy before the onset of autoimmunity in children from age 6 months to assess its safety and immune response actions on immunity and the gut microbiome. Methods A phase I/II randomised controlled trial was performed in a single clinical study centre in Germany. Participants were 44 islet autoantibody-negative children aged 6 months to 2.99 years who had a first-degree relative with type 1 diabetes and a susceptible HLA DR4-DQ8-containing genotype. Children were randomised 1:1 to daily oral insulin (7.5 mg with dose escalation to 67.5 mg) or placebo for 12 months using a web-based computer system. The primary outcome was immune efficacy pre-specified as induction of antibody or T cell responses to insulin and measured in a central treatment-blinded laboratory. Results Randomisation was performed in 44 children. One child in the placebo group was withdrawn after the first study visit and data from 22 insulin-treated and 21 placebo-treated children were analysed. Oral insulin was well tolerated with no changes in metabolic variables. Immune responses to insulin were observed in children who received both insulin (54.5%) and placebo (66.7%), and the trial did not demonstrate an effect on its primary outcome (p = 0.54). In exploratory analyses, there was preliminary evidence that the immune response and gut microbiome were modified by the INS genotype Among children with the type 1 diabetes-susceptible INS genotype (n = 22), antibody responses to insulin were more frequent in insulin-treated (72.7%) as compared with placebo-treated children (18.2%; p = 0.03). T cell responses to insulin were modified by treatment-independent inflammatory episodes. Conclusions/interpretation The study demonstrated that oral insulin immunotherapy in young genetically at-risk children was safe, but was not associated with an immune response as predefined in the trial primary outcome. Exploratory analyses suggested that antibody responses to oral insulin may occur in children with a susceptible INS genotype, and that inflammatory episodes may promote the activation of insulin-responsive T cells. Trial registration Clinicaltrials.gov NCT02547519 Funding The main funding source was the German Center for Diabetes Research (DZD e.V.) Graphical abstract


2021 ◽  
Vol 80 (Suppl 1) ◽  
pp. 45.2-45
Author(s):  
I. Heggli ◽  
R. Schüpbach ◽  
N. Herger ◽  
T. A. Schweizer ◽  
A. Juengel ◽  
...  

Background:Modic type 1 changes (MC1) are vertebral bone marrow (BM) edema that associate with non-specific low back pain (LBP). Two etiologies have been described. In the infectious etiology the anaerobic aerotolerant Cutibacterium acnes (C. acnes) invades damaged intervertebral discs (IVDs) resulting in disc infection and endplate damage, which leads to the evocation of an immune response. In the autoinflammatory etiology disc and endplate damage lead to the exposure of immune privileged disc cells and matrix to leukocytes, thereby evoking an immune response in the BM. Different etiologies require different treatment strategies. However, it is unknown if etiology-specific pathological mechanisms exist.Objectives:The aim of this study was to identify etiology-specific dysregulated pathways of MC1 and to perform in-depth analysis of immune cell populations of the autoinflammatory etiology.Methods:BM aspirates and biopsies were obtained from LBP patients with MC1 undergoing spinal fusion. Aspirates/biopsies were taken prior screw insertion through the pedicle screw trajectory. From each patient, a MC1 and an intra-patient control aspiration/biopsy from the adjacent vertebral level was taken. If C. acnes in IVDs adjacent to MC1 were detected by anaerobic bacterial culture, patients were assigned to the infectious, otherwise to the autoinflammatory etiology.Total RNA was isolated from aspirates and sequenced (Novaseq) (infectious n=3 + 3, autoinflammatory n=5 + 5). Genes were considered as differentially expressed (DEG) if p-value < 0.01 and log2fc > ± 0.5. Gene ontology (GO) enrichment was performed in R (GOseq), gene set enrichment analysis (GSEA) with GSEA software.Changes in cell populations of the autoinflammatory etiology were analyzed with single cell RNA sequencing (scRNAseq): Control and MC1 biopsies (n=1 + 1) were digested, CD45+CD66b- mononuclear cells isolated with fluorescence activated cell sorting (FACS), and 10000 cells were sequenced (10x Genomics). Seurat R toolkit was used for quality-control, clustering, and differential expression analysis.Transcriptomic changes (n=5 + 5) of CD45+CD66b+ neutrophils isolated with flow cytometry from aspirates were analyzed as for total bulk RNAseq. Neutrophil activation (n=3 + 3) was measured as CD66b+ expression with flow cytometry. CD66bhigh and CD66blow fractions in MC1 and control neutrophils were compared with paired t-test.Results:Comparing MC1 to control in total bulk RNAseq, 204 DEG in the autoinflammatory and 444 DEG in the infectious etiology were identified with only 67 shared genes (Fig. 1a). GO enrichment revealed “T-cell activation” (p = 2.50E-03) in the autoinflammatory and “complement activation, classical pathway” (p=1.1E-25) in the infectious etiology as top enriched upregulated biological processes (BP) (Fig 1b). ScRNAseq of autoinflammatory MC1 showed an overrepresentation of T-cells (p= 1.00E-34, OR=1.54) and myelocytes (neutrophil progenitor cells) (p=4.00E-05, OR=2.27) indicating an increased demand of these cells (Fig. 1c). Bulk RNAseq analysis of neutrophils from the autoinflammatory etiology revealed an activated, pro-inflammatory phenotype (Fig 1d), which was confirmed with more CD66bhigh neutrophils in MC1 (+11.13 ± 2.71%, p=0.02) (Fig. 1e).Figure 1.(a) Venn diagram of DEG from total bulk RNAseq (b) Top enriched upregulated BP of autoinflammatory (left) and infectious (right) etiology (c) Cell clustering of autoinflammatory MC1 BM (d) Enrichment of “inflammatory response” gene set in autoinflammatory MC1 neutrophils (e) Representative histogram of CD66b+ expression in MC1 and control neutrophils.Conclusion:Autoinflammatory and infectious etiologies of MC1 have different pathological mechanisms. T-cell and neutrophil activation seem to be important in the autoinflammatory etiology. This has clinical implication as it could be explored for diagnostic approaches to distinguish the two MC1 etiologies and supports developing targeted treatments for both etiologies.Disclosure of Interests:None declared


Author(s):  
Josefine Wadenpohl ◽  
Julia Seyfarth ◽  
Paul Hehenkamp ◽  
Maximilian Hoffmann ◽  
Sebastian Kummer ◽  
...  

2002 ◽  
Vol 103 (3) ◽  
pp. 249-259 ◽  
Author(s):  
Nicole Eibl ◽  
Martin Spatz ◽  
Gottfried F. Fischer ◽  
Wolfgang R. Mayr ◽  
Aysen Samstag ◽  
...  

Author(s):  
Matthew J. Simmonds ◽  
Stephen C. L. Gough

Dysfunction within the endocrine system can lead to a variety of diseases with autoimmune attack against individual components being some of the most common. Endocrine autoimmunity encompasses a spectrum of disorders including, e.g., common disorders such as type 1 diabetes, Graves’ disease, Hashimoto’s thyroiditis, and rarer disorders including Addison’s disease and the autoimmune polyendocrine syndromes type 1 (APS 1) and type 2 (APS 2) (see Table 1.6.1). Autoimmune attack within each of these diseases although aimed at different endocrine organs is caused by a breakdown in the immune system’s ability to distinguish between self and nonself antigens, leading to an immune response targeted at self tissues. Investigating the mechanisms behind this breakdown is vital to understand what has gone wrong and to determine the pathways against which therapeutics can be targeted. Before discussing how self-tolerance fails, we first have to understand how the immune system achieves self-tolerance.


Author(s):  
Marcelo Maia Pinheiro ◽  
Felipe Moura Maia Pinheiro ◽  
Margareth Afonso Torres

Summary Type 1 diabetes mellitus (T1DM) is a chronic disease characterized by autoimmune destruction of pancreatic beta cells and inadequate insulin production. Remission criteria in T1DM take into account serum levels of C-peptide and glycosylated hemoglobin, as well as the dose of insulin administered to the patient. However, remission of T1DM lasting longer than 1 year is rare. We describe here the cases of two young women who presented with positive glutamic acid decarboxylase (GAD) antibody and classic clinical manifestations of T1DM. Both patients had a prior history of Hashimoto’s thyroiditis. They were initially treated with a basal-bolus regimen of insulin (glargine and lispro/glulisine). Once their blood glucose levels were controlled, they were started on oral sitagliptin 100 mg and vitamin D3 5000 IU daily. After this therapy, both patients achieved clinical diabetes remission for 4 years, along with a decrease in anti-GAD antibody levels. These benefits were probably associated with immunological effects of these medications. Inhibition of dipeptidyl peptidase 4 (DPP-4) in animal models deregulates Th1 immune response, increases secretion of Th2 cytokines, activates CD4+CD25+FoxP3+ regulatory T-cells and prevents IL-17 production. Vitamin D3 also activates CD4+CD25+FoxP3+ regulatory T-cells, and these medications combined can improve the immune response in patients with new-onset T1DM and probably promote sustained clinical remission. Learning points: The use of sitagliptin and vitamin D3 in patients with new-onset type 1 diabetes mellitus (T1DM) may help decrease the daily insulin requirement by delaying beta cell loss and improving endogenous insulin production. The use of sitagliptin and vitamin D3 in new-onset T1DM could help regulate the imbalance between Th17 and Treg cells. Age 14 years or above, absence of ketoacidosis and positive C-peptide levels in patients with T1DM are good criteria to predict prolonged T1DM remission. The determination of anti-GAD antibodies and C-peptide levels could be helpful in the follow-up of patients in use of sitagliptin and vitamin D3, which could be associated with prolonged T1DM clinical remission.


2019 ◽  
Vol 30 (7) ◽  
pp. 2049-2059 ◽  
Author(s):  
Neha Nandedkar-Kulkarni ◽  
Abhishek R. Vartak ◽  
Steven J. Sucheck ◽  
Katherine A. Wall ◽  
Anthony Quinn ◽  
...  

Diabetologia ◽  
2014 ◽  
Vol 57 (7) ◽  
pp. 1428-1436 ◽  
Author(s):  
Michael S. Turner ◽  
Kumiko Isse ◽  
Douglas K. Fischer ◽  
Hēth R. Turnquist ◽  
Penelope A. Morel

2015 ◽  
Vol 46 (1) ◽  
pp. 230-241 ◽  
Author(s):  
James E. Tooley ◽  
Nalini Vudattu ◽  
Jinmyung Choi ◽  
Chris Cotsapas ◽  
Lesley Devine ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document