scholarly journals Effect of Incorporating Cellulose Nanocrystals from Corncob on the Tensile, Thermal and Barrier Properties of Poly(Vinyl Alcohol) Nanocomposites

2013 ◽  
Vol 2013 ◽  
pp. 1-9 ◽  
Author(s):  
Hudson Alves Silvério ◽  
Wilson Pires Flauzino Neto ◽  
Daniel Pasquini

The effect of incorporating cellulose nanocrystals from corncob (CNC) on the tensile, thermal, and barrier properties of poly(vinyl alcohol) (PVA) nanocomposites was evaluated. The CNC were prepared by sulfuric acid hydrolysis at 45°C for 60 minutes, using 15 mL of H2SO4(9.17 M) for each gram of fiber. The CNC60presented a needle-shaped morphology, high crystallinity (83.7%), good initial degradation temperature (236°C), average length (L) of210.8±44.2 nm, diameter (D) of4.15±1.08 nm, and high aspect ratio (L/D) of53.4±15.8. PVA/CNC nanocomposite films with different filler loading levels (3, 6, and 9% by wt) were prepared by casting. The ultimate tensile strength (UTS), thermal stability (TS), light transmittance (Tr) and water vapor permeability (Pw) of the nanocomposites were measured. When compared to neat PVA film, the UTS of the nanocomposites improved significantly, by 140.2%,Pwdecreased up to 28.73%, and there were no significant changes in TS. The nanocomposites also showed excellent Tr in the visible region, maintaining substantially equivalent transparency. These improvements in the nanocomposites' properties suggest a close association between filler and matrix, besides indicating that the CNC were well dispersed and adherent to the polymer matrix.

Nanomaterials ◽  
2019 ◽  
Vol 9 (2) ◽  
pp. 298 ◽  
Author(s):  
Shufang Wu ◽  
Xunjun Chen ◽  
Minghao Yi ◽  
Jianfang Ge ◽  
Guoqiang Yin ◽  
...  

In this study, feather keratin/polyvinyl alcohol/tris(hydroxymethyl)aminomethane (FK/PVA/Tris) bionanocomposite films containing two types of nanoparticles, namely one-dimensional sodium montmorillonite (MMT) clay platelets (0.5, 1, 3, and 5 wt%) and three-dimensional TiO2 nanospheres (0.5, 1, 3, and 5 wt%), are prepared using solvent casting method. X-ray diffraction studies confirm the completely exfoliated structure of FK/PVA/Tris/MMT nanocomposites. The successful formation of new hydrogen bonds between the hydroxyl groups of the film matrix and the nanofillers is confirmed by Fourier transform infrared spectroscopy. The tensile strength, elongation at break, and initial degradation temperature of the films are enhanced after MMT and TiO2 incorporation. The water vapor permeability, oxygen permeability, and light transmittance decrease with increase in TiO2 and MMT contents. In summary, nanoblending is an effective method to promote the application of FK/PVA/Tris blend films in the packaging field.


2015 ◽  
Vol 15 (10) ◽  
pp. 8348-8352 ◽  
Author(s):  
Min Eui Lee ◽  
Hyoung-Joon Jin

Poly(vinyl alcohol) (PVA) composites containing graphene oxide (GO) functionalized with PVA were synthesized via the esterification of the carboxylic groups of GO. The presence of PVA-grafted GO (PVA-g-GO) in the PVA matrix induced strong interactions between the chains of the PVA matrix and allowed the PVA-g-GO to be uniformly dispersed throughout the matrix. The grafting of PVA to GO increased the gas barrier properties of the GO/PVA composites because of the increased compatibility between GO and PVA. The PVA-g-GO/PVA composites were used to coat the surface of poly(ethylene terephthalate) films. These coated films exhibited excellent gas barrier properties; the film containing 0.3 wt% of PVA-g-GO had an oxygen transmission rate (OTR) of 0.025 cc/(m2 · day) and an optical transmittance of 83.8%. As a result, PVA-g-GO/PVA composites that exhibited enhanced gas barrier properties were prepared with a solution mixing method.


2021 ◽  
Author(s):  
Ya-Yu Li ◽  
Yan-Ru Bai ◽  
Xin-Qian Zhang ◽  
Xin Liu ◽  
Zhen Dai ◽  
...  

Abstract Three kinds of cellulose nanocrystals (CNCs) were added into waterborne polyurethane (WPU), and nanocomposite films were prepared by solution casting method. The influence of different ionic function groups on microstructure and properties of composite films was investigated, and interaction mechanism between these two components was analyzed. Results show that thermal stability of these composite films are improved by 15℃. Compared with sulfated CNCs (SCNCs) and TEMPO oxidized CNCs (TOCNCs), FE-SEM results prove that cationized CNCs (CaCNCs) have better dispersion in composite films. In addition, fracture surface did not display large cavities, which indicates the interface binding force between WPU and CaCNCs is stronger. The tensile strength and fracture work of CaCNC/WPU composite film increase by 11.9% and by 8.4%, respectively. The oxygen permeability of CaCNC/WPU composite film is the lowest in these composite films, which is 5.00 cm3•cm (cm2•s•Pa)-1. Water vapor permeability of composite films may have a close positive correlation with their hygroscopicity. In all, composite film with CaCNCs has optimal strength, toughness, light transmittance and oxygen barrier properties. There may be opposite ion attraction superimposed hydrogen bond between CaCNCs and WPU in the composite film. The composite films are expected to have applications in food packaging, furniture coatings and biomedical applications.


Nanomaterials ◽  
2018 ◽  
Vol 8 (12) ◽  
pp. 1013 ◽  
Author(s):  
Mónica Cobos ◽  
M. Fernández ◽  
M. Fernández

The enhanced properties of polymer nanocomposites as compared with pure polymers are only achieved in the presence of well-dispersed nanofillers and strong interfacial adhesion. In this study, we report the preparation of nanocomposite films based on poly(vinyl alcohol) (PVA) filled with well dispersed graphene sheets (GS) by in situ reduction of graphene oxide (GO) dispersed in PVA solution using ascorbic acid (L-AA) as environmentally friendly reductant. The combined effect of GS content and glycerol as plasticizer on the structure, thermal, mechanical, water absorption, and water barrier properties of PVA/GS nanocomposite films is studied for the first time. Higher glass transition temperature, lower crystallinity, melting, and crystallization temperature, higher mechanical properties, and remarkable improvement in the thermal stability compared to neat PVA are obtained as a result of strong interfacial interactions between GS and PVA by hydrogen bonding. PVA/GS composite film prepared by ex situ process is more brittle than its in situ prepared counterpart. The presence of GS improves the water barrier and water resistance properties of nanocomposite films by decreasing water vapor permeability and water absorption of PVA. This work demonstrates that the tailoring of PVA/GS nanocomposite properties is enabled by controlling GS and glycerol content. The new developed materials, particularly those containing plasticizer, could be potential carriers for transdermal drug delivery.


Foods ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 3038
Author(s):  
Constantinos E. Salmas ◽  
Aris E. Giannakas ◽  
Maria Baikousi ◽  
Eleni Kollia ◽  
Vasiliki Tsigkou ◽  
...  

In this study, CuMt and TiMt montmorillonites were produced via an ion-exchange process with Cu+ and Ti4+ ions. These nanostructured materials were characterized with X-ray diffraction (XRD) and fourier transform infrared spectroscopy (FTIR) measurements and added as nanoreinforcements and active agents in chitosan (CS)/poly-vinyl-alcohol (PVOH)-based packaging films. The developed films were characterized by XRD and FTIR measurements. The antimicrobial, tensile, and oxygen/water-barrier measurements for the evaluation of the packaging performance were carried out to the obtained CS/PVOH/CuMt and CS/PVOH/TiMt films. The results of this study indicated that CS/PVOH/CuMt film is a stronger intercalated nanocomposite structure compared to the CS/PVOH/TiMt film. This fact reflected higher tensile strength and water/oxygen-barrier properties. The antibacterial activity of these films was tested against four food pathogenic bacteria: Escherichia coli, Staphylococcus aureus, Salmonella enterica and Listeria monocytogenes. Results showed that in most cases, the antibacterial activity was generated by the CuMt and TiMt nanostructures. Thus, both CS/PVOH/CuMt and CS/PVOH/TiMt films are nanocomposite candidates with very good perspectives for future applications on food edible active packaging.


2012 ◽  
Vol 409-410 ◽  
pp. 156-163 ◽  
Author(s):  
Hua-Dong Huang ◽  
Peng-Gang Ren ◽  
Jun Chen ◽  
Wei-Qin Zhang ◽  
Xu Ji ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document