scholarly journals Improving Thermal, Mechanical, and Barrier Properties of Feather Keratin/Polyvinyl Alcohol/Tris(hydroxymethyl)aminomethane Nanocomposite Films by Incorporating Sodium Montmorillonite and TiO2

Nanomaterials ◽  
2019 ◽  
Vol 9 (2) ◽  
pp. 298 ◽  
Author(s):  
Shufang Wu ◽  
Xunjun Chen ◽  
Minghao Yi ◽  
Jianfang Ge ◽  
Guoqiang Yin ◽  
...  

In this study, feather keratin/polyvinyl alcohol/tris(hydroxymethyl)aminomethane (FK/PVA/Tris) bionanocomposite films containing two types of nanoparticles, namely one-dimensional sodium montmorillonite (MMT) clay platelets (0.5, 1, 3, and 5 wt%) and three-dimensional TiO2 nanospheres (0.5, 1, 3, and 5 wt%), are prepared using solvent casting method. X-ray diffraction studies confirm the completely exfoliated structure of FK/PVA/Tris/MMT nanocomposites. The successful formation of new hydrogen bonds between the hydroxyl groups of the film matrix and the nanofillers is confirmed by Fourier transform infrared spectroscopy. The tensile strength, elongation at break, and initial degradation temperature of the films are enhanced after MMT and TiO2 incorporation. The water vapor permeability, oxygen permeability, and light transmittance decrease with increase in TiO2 and MMT contents. In summary, nanoblending is an effective method to promote the application of FK/PVA/Tris blend films in the packaging field.

Nanomaterials ◽  
2020 ◽  
Vol 10 (2) ◽  
pp. 327 ◽  
Author(s):  
Shufang Wu ◽  
Xunjun Chen ◽  
Tiehu Li ◽  
Yingde Cui ◽  
Minghao Yi ◽  
...  

In this study, feather keratin/polyvinyl alcohol/tris(hydroxymethyl)aminomethane (FK/PVA/Tris) bionanocomposite films containing graphene oxide (GO) (0.5, 1, 2, and 3 wt%) or graphene (0.5, 1, 2, and 3 wt%) were prepared using a solvent casting method. The scanning electron microscopy results indicated that the dispersion of GO throughout the film matrix was better than that of graphene. The successful formation of new hydrogen bonds between the film matrix and GO was confirmed through the use of Fourier-transform infrared spectroscopy. The tensile strength, elastic modulus, and initial degradation temperature of the films increased, whereas the total soluble mass, water vapor permeability, oxygen permeability, and light transmittance decreased following GO or graphene incorporation. In summary, nanoblending is an effective method to promote the application of FK/PVA/Tris-based blend films in the packaging field.


2021 ◽  
Author(s):  
Ya-Yu Li ◽  
Yan-Ru Bai ◽  
Xin-Qian Zhang ◽  
Xin Liu ◽  
Zhen Dai ◽  
...  

Abstract Three kinds of cellulose nanocrystals (CNCs) were added into waterborne polyurethane (WPU), and nanocomposite films were prepared by solution casting method. The influence of different ionic function groups on microstructure and properties of composite films was investigated, and interaction mechanism between these two components was analyzed. Results show that thermal stability of these composite films are improved by 15℃. Compared with sulfated CNCs (SCNCs) and TEMPO oxidized CNCs (TOCNCs), FE-SEM results prove that cationized CNCs (CaCNCs) have better dispersion in composite films. In addition, fracture surface did not display large cavities, which indicates the interface binding force between WPU and CaCNCs is stronger. The tensile strength and fracture work of CaCNC/WPU composite film increase by 11.9% and by 8.4%, respectively. The oxygen permeability of CaCNC/WPU composite film is the lowest in these composite films, which is 5.00 cm3•cm (cm2•s•Pa)-1. Water vapor permeability of composite films may have a close positive correlation with their hygroscopicity. In all, composite film with CaCNCs has optimal strength, toughness, light transmittance and oxygen barrier properties. There may be opposite ion attraction superimposed hydrogen bond between CaCNCs and WPU in the composite film. The composite films are expected to have applications in food packaging, furniture coatings and biomedical applications.


Polymers ◽  
2020 ◽  
Vol 12 (1) ◽  
pp. 158
Author(s):  
Yao Dou ◽  
Liguang Zhang ◽  
Buning Zhang ◽  
Ming He ◽  
Weimei Shi ◽  
...  

The development of edible films based on the natural biopolymer feather keratin (FK) from poultry feathers is of great interest to food packaging. Edible dialdehyde carboxymethyl cellulose (DCMC) crosslinked FK films plasticized with glycerol were prepared by a casting method. The effect of DCMC crosslinking on the microstructure, light transmission, aggregate structure, tensile properties, water resistance and water vapor barrier were investigated. The results indicated the formation of both covalent and hydrogen bonding between FK and DCMC to form amorphous FK/DCMC films with good UV-barrier properties and transmittance. However, with increasing DCMC content, a decrease in tensile strength of the FK films indicated that plasticization, induced by hydrophilic properties of the DCMC, partly offset the crosslinking effect. Reduction in the moisture content, solubility and water vapor permeability indicated that DCMC crosslinking slightly reduced the moisture sensitivity of the FK films. Thus, DCMC crosslinking increased the potential viability of the FK films for food packaging applications, offering a value-added product.


2021 ◽  
pp. 004051752199235
Author(s):  
Florentina Sederavičiūtė ◽  
Jurgita Domskienė ◽  
Lina Jurgelionytė ◽  
Audronė Sankauskaite ◽  
Dushan Kimmer

The aim of this study was to estimate the influence of purification and treatment with textile finishing agent procedures on structural, mechanical, and water barrier properties of bacterial cellulose (BC) in order to predict the end-use properties. Kombucha fungus generated by Komagataeibacter xylinus species, formerly known as Gluconacetobacter xylinus, was used to produce the BC material. The BC was purified with 0.5% sodium hydroxide (NaOH) solution and treated with 5%, 10%, and 20% concentration of N, N-dimethylol 4,5-dihydroxy-ethylene urea (DMDHEU). By Fourier transform spectroscopy (FTIR) and X-ray diffractometer (XRD) was estimated, that the purification with a weak alkali solution was effective to remove amorphous matter of the BC material. Scanning electron microscope (SEM) images demonstrated the BC structure, similar to a non-woven textile fabric with clearly visible three-dimensional networks of fine cellulose fibers. After the purification process, the BC material tensile strength increased by 52%; however, the strain decreased by 93%. BC material after treatment with 20% DMDHEU regained deformability and tensile properties analogous to untreated samples. Water vapor permeability (WVP) values increased and water absorption capacity (WAC) decreased in BC material with increasing DMDHEU concentration. According to the FTIR results, the crosslinking reaction of DMDHEU and adjacent BC molecules was proved. The treatment with DMDHEU restores the amorphous properties of BC material, and therefore blocks water absorption, and the decrease in the water absorption parameter might be determined.


2013 ◽  
Vol 2013 ◽  
pp. 1-9 ◽  
Author(s):  
Hudson Alves Silvério ◽  
Wilson Pires Flauzino Neto ◽  
Daniel Pasquini

The effect of incorporating cellulose nanocrystals from corncob (CNC) on the tensile, thermal, and barrier properties of poly(vinyl alcohol) (PVA) nanocomposites was evaluated. The CNC were prepared by sulfuric acid hydrolysis at 45°C for 60 minutes, using 15 mL of H2SO4(9.17 M) for each gram of fiber. The CNC60presented a needle-shaped morphology, high crystallinity (83.7%), good initial degradation temperature (236°C), average length (L) of210.8±44.2 nm, diameter (D) of4.15±1.08 nm, and high aspect ratio (L/D) of53.4±15.8. PVA/CNC nanocomposite films with different filler loading levels (3, 6, and 9% by wt) were prepared by casting. The ultimate tensile strength (UTS), thermal stability (TS), light transmittance (Tr) and water vapor permeability (Pw) of the nanocomposites were measured. When compared to neat PVA film, the UTS of the nanocomposites improved significantly, by 140.2%,Pwdecreased up to 28.73%, and there were no significant changes in TS. The nanocomposites also showed excellent Tr in the visible region, maintaining substantially equivalent transparency. These improvements in the nanocomposites' properties suggest a close association between filler and matrix, besides indicating that the CNC were well dispersed and adherent to the polymer matrix.


2021 ◽  
Vol 2 (4) ◽  
pp. 744-758
Author(s):  
Morgan Malm ◽  
Andrea M. Liceaga ◽  
Fernanda San Martin-Gonzalez ◽  
Owen G. Jones ◽  
Jose M. Garcia-Bravo ◽  
...  

Edible insects have gained attention due to their impressive nutritional composition, as well as their efficient use of natural resources. However, a research gap remains on the applications of insect chitosan, especially as it relates to their potential use as food packaging material. Chitosan from two reared cricket species (Acheta domesticus and Gryllodes sigillatus) was evaluated for use as food packaging material. Cricket chitosan films (CCF) were structurally similar to commercial shrimp chitosan films (SCF) at controlled glycerol levels, as seen by shared spectral peaks in FT-IR analyses. Mechanical properties of CCF showed they had equal or greater tensile strength when compared to commercial SCF, although flexibility was lower. Scanning electron microscopy showed increased roughness of microstructure, likely increasing the tortuosity. As a result, CCF had improved water vapor permeability compared to commercial SCF. Melanin complexes present in cricket chitin and chitosan increased hydrophobicity and decreased light transmittance. This study also revealed that intrinsic species differences, which occur during insect and crustacean exoskeleton development, could have effects on the functionality of chitosan packaging materials. Overall, CCF were found to be as effective as commercial SCF, while providing additional advantages. CCF derived from reared crickets have good mechanical and barrier properties, and improved water resistance and light barrier characteristics. Edible cricket chitosan has the potential to be used as bio-based packaging material for food and pharmaceutical applications.


2021 ◽  
Vol 12 (3) ◽  
pp. 3725-3734

In the present study, the effects of the two ratios of polyvinyl alcohol /Chitosan (1:1 and 3:1) and nano-silicon dioxide (nano-SiO2) (0, 0.5, and 1%) on structural and physicochemical properties of PVA/Chitosan/ nano-SiO2 nanocomposite films were investigated. Our findings showed that the treatments' water solubility (WS) in the presence of nano-SiO2 and higher PVA content was decreased, and the lowest amount was in P3C1-1% (59%). The addition of silica nanoparticles decreased the water vapor permeability (WVP) of films, and the lowest amount of WVP was for treatment with a ratio of 1:1 of PVA/chitosan and 1% nano-SiO2 (P3C1-1%) which was 3.08× 10-10 g m s-1m-2 Pa. Tensile strength (Ts) value was achieved 35.86 MPa in higher PVA content and 1% of nano-SiO2 (P3C1-1%) which was the highest. However, the light transmission value of all treatments did not differ greatly. According to the FTIR results, the appropriate interaction between both polymers and nano-SiO2 was observed in the concentration of 1% nano-SiO2 in P1C1. Eventually, significant improvement of structural and physicochemical properties of the films could achieve in higher PVA content and concentration of 1% of nano-SiO2. Based on these results, these nanocomposite films could be considered suitable for the packaging sector and preserve food quality.


2021 ◽  
Vol 1021 ◽  
pp. 280-289
Author(s):  
Abdulkader M. Alakrach ◽  
Awad A. Al-Rashdi ◽  
Mohamed Khalid Al-Omar ◽  
Taha M. Jassam ◽  
Sam Sung Ting ◽  
...  

In this study, PLA/TiO2 and PLA/HNTs-TiO2 nanocomposites films were fabricated via solution casting method. By testing the film density, solubility, water contact angle and water vapor permeability, the PLA nanocomposite films, the comprehensive performances of the nanocomposites were analysed. The outcomes demonstrated that maximum film density of PLA/TiO2 and PLA/HNTs-TiO2 nanocomposites films increased gradually with the increasing of nanofiller loadings. Moreover, the incorporation of TiO2 and HNTs-TiO2 significantly decreased the water vapor transmittance rate of the nanocomposite films with a slight priority to the addition of HNTs-TiO2, the water solubility was significantly improved with the addition of both nanofillers. Furthermore, the barrier properties were developed with the addition of both TiO2 and HNTs-TiO2 especially after the addition of low nanofiller loadings. Overall, the performance of the PLA/HNTs-TiO2 nanocomposite films was better than that PLA/TiO2 film. Nevertheless, both of the PLA nanocomposite samples achieved the requests of food packaging applications.


2021 ◽  
Author(s):  
Saeed Yari ◽  
Jamshid Mohammadi-Rovshandeh ◽  
Mohsen Shahrousvand

Abstract Pollution and destruction of the environment due to the accumulation of non-degradable plastics are some of the most important concerns in the world. A significant amount of this waste is related to the polymers used in food packaging. Therefore, in recent years, experts in the food industry have been looking for suitable biodegradable alternatives to synthetic polymers. Preparing biocompatible and biodegradable films based on starch is a good choice. In this study, various factors affecting films of starch/polyvinyl alcohol (PVA)/ containing ZnO nanoparticles such as the amount of starch, PVA, glycerol, and ZnO were evaluated by response surface methodology (RSM). Film formation, mechanical properties, swelling, solubility, and water vapor permeability (WVP) were selected as responses of RSM. The results showed that hydrogen bonding interactions between polyvinyl alcohol and starch improved the film formation. The effect of glycerol and PVA content on the mechanical strength was contrary to each other. As the amount of PVA increased, the tensile strength first decreased and then increased. The value of WVP was for all Runs from 0 to 6.77 × 10− 8 gm− 1s− 1Pa− 1. Finally, films with high film formation, maximum tensile strength, and high elongation at break, minimum solubility, permeability, and swelling were optimized.


BioResources ◽  
2019 ◽  
Vol 14 (2) ◽  
pp. 4748-4759
Author(s):  
Fen Yin ◽  
Xuejiao Zhang ◽  
Dongna Li ◽  
Xiaojun Ma

A green biocomposite of poly(3-hydroxybutyrate-co-4-hydroxybutyrate) (P34HB) and cellulose aerogels was developed. Cellulose gel was prepared from NaOH/urea aqueous solution, and subsequent regenerating by Na2SO4 solution and freeze-drying resulted in porous cellulose aerogels. The P34HB/cellulose aerogel biocomposite was fabricated by immersion of porous cellulose in a polymer solution and hot-pressing. The morphology, crystallization, thermal, mechanical, and barrier properties (H2O) of biocomposite were investigated. The cellulose aerogels matrix exhibited a three-dimensional network structure with porosity and a wide pore size distribution, contributing to the change of the glass transition temperature and cold crystallization temperature of biocomposites. Compared with cellulose aerogels, the tensile strength and elongation at break of biocomposites were increased by as much as 48% and 25.1%, respectively. Moreover, biocomposites demonstrated an increased contact angle and water vapor permeability coefficient compared with the cellulose aerogel. The results revealed the potential of P34HB/cellulose aerogel biocomposites for practical application as packaging materials.


Sign in / Sign up

Export Citation Format

Share Document