scholarly journals Emerging Stem Cell Controls: Nanomaterials and Plasma Effects

2013 ◽  
Vol 2013 ◽  
pp. 1-15 ◽  
Author(s):  
F. F. Borghi ◽  
A. E. Rider ◽  
S. Kumar ◽  
Z. J. Han ◽  
D. Haylock ◽  
...  

Stem cells (SC) are among the most promising cell sources for tissue engineering due to their ability to self-renew and differentiate, properties that underpin their clinical application in tissue regeneration. As such, control of SC fate is one of the most crucial issues that needs to be fully understood to realise their tremendous potential in regenerative biology. The use of functionalized nanostructured materials (NM) to control the microscale regulation of SC has offered a number of new features and opportunities for regulating SC. However, fabricating and modifying such NM to induce specific SC response still represent a significant scientific and technological challenge. Due to their versatility, plasmas are particularly attractive for the manufacturing and modification of tailored nanostructured surfaces for stem cell control. In this review, we briefly describe the biological role of SC and the mechanisms by which they are controlled and then highlight the benefits of using a range of nanomaterials to control the fate of SC. We then discuss how plasma nanoscience research can help produce/functionalise these NMs for more effective and specific interaction with SCs. The review concludes with a perspective on the advantages and challenges of research at the intersection between plasma physics, materials science, nanoscience, and SC biology.

2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
Jiaying Lin ◽  
Qianqian Zhu ◽  
Jialyu Huang ◽  
Renfei Cai ◽  
Yanping Kuang

Adipose-derived stem cell (ADSC) is an alternative and less invasive source of mesenchymal stem cells which can be used to develop biological treatment strategies for tissue regeneration, and their therapeutic applications hinge on an understanding of their physiological characteristics. N6-Methyladenosine (m6A) is the most common chemical modification of mRNAs and has recently been revealed to play important roles in cell lineage differentiation and development. However, the role of m6A modification in the vascular smooth muscle cell (VSMC) differentiation of ADSCs remains unclear. Herein, we investigated the expression of N6-adenosine methyltransferases (Mettl3) and demethylases (Fto and Alkbh5) and found that Mettl3 was upregulated in ADSCs undergoing vascular smooth muscle differentiation induction. Moreover, silence of Mettle3 reduced the expression level of VSMC-specific markers, including α-SMA, SM22α, calponin, and SM-MHC. Meanwhile, Mettl3 knockdown also decreased the expression of paracrine factors, including VEGF, HGF, TGF-β, GM-CSF, bFGF, and SDF-1. In addition, our results suggested that hypoxia stress promotes the ADSC differentiate into VMSCs and regulates the secretion of VEGF, HGF, TGF-β, GM-CSF, bFGF, and SDF-1 by mediating Mettl3 gene expression. These observations might contribute to novel progress in understanding the role of epitranscriptomic regulation in the VSMC differentiation of ADSCs and provide a promising perspective for new therapeutic strategies for tissue regeneration.


2020 ◽  
Vol 20 (4) ◽  
pp. 259-268 ◽  
Author(s):  
Paolo Capparè ◽  
Giulia Tetè ◽  
Maria Teresa Sberna ◽  
Paola Panina-Bordignon

Progress of modern dentistry is accelerating at a spectacular speed in the scientific, technological and clinical areas. Practical examples are the advancement in the digital field, which has guaranteed an average level of prosthetic practices for all patients, as well as other scientific developments, including research on stem cell biology. Given their plasticity, defined as the ability to differentiate into specific cell lineages with a capacity of almost unlimited self-renewal and release of trophic/immunomodulatory factors, stem cells have gained significant scientific and commercial interest in the last 15 years. Stem cells that can be isolated from various tissues of the oral cavity have emerged as attractive sources for bone and dental regeneration, mainly due to their ease of accessibility. This review will present the current understanding of emerging conceptual and technological issues of the use of stem cells to treat bone and dental loss defects. In particular, we will focus on the clinical application of stem cells, either directly isolated from oral sources or in vitro reprogrammed from somatic cells (induced pluripotent stem cells). Research aimed at further unraveling stem cell plasticity will allow to identify optimal stem cell sources and characteristics, to develop novel regenerative tools in dentistry.


2018 ◽  
Vol 9 (4) ◽  
Author(s):  
Cristina Tecchio ◽  
Angelo Andreini ◽  
Claudio Costantini ◽  
Alberto Zamò ◽  
Donata De Sabata ◽  
...  

The prognosis of patients affected by myelofibrosis (MF) is usually dismal and allogeneic hematopoietic stem cell transplantation (HSCT) remains the only cure. The number of HSCTs in MF patients has recently increased. However, a major obstacle is still represented by primary graft failure (PGF). Currently there are no definitive guidelines for the treatment of PGF and a second HSCT can be performed only when an allogeneic donor is rapidly available. Herein we report on a MF patient with PGF after an unrelated HSCT, who was rescued by a non-myeloablative, unmanipulated, haploidentical HSCT that resulted in persistent engraftment and bone-marrow fibrosis regression, but not in a long-term disease control. Based on this experience we briefly review the role of different conditioning regimens and hematopoietic stem cell sources in the setting of HSCT for MF patients with PGF. The role of haploidentical donors in MF patients lacking HLAmatched relatives is also discussed.


2015 ◽  
Vol 72 (24) ◽  
pp. 4759-4770 ◽  
Author(s):  
Beate Heissig ◽  
Douaa Dhahri ◽  
Salita Eiamboonsert ◽  
Yousef Salama ◽  
Hiroshi Shimazu ◽  
...  

Cells ◽  
2018 ◽  
Vol 7 (9) ◽  
pp. 114 ◽  
Author(s):  
Camilla Paoletti ◽  
Carla Divieto ◽  
Valeria Chiono

The irreversible loss of functional cardiomyocytes (CMs) after myocardial infarction (MI) represents one major barrier to heart regeneration and functional recovery. The combination of different cell sources and different biomaterials have been investigated to generate CMs by differentiation or reprogramming approaches although at low efficiency. This critical review article discusses the role of biomaterial platforms integrating biochemical instructive cues as a tool for the effective generation of functional CMs. The report firstly introduces MI and the main cardiac regenerative medicine strategies under investigation. Then, it describes the main stem cell populations and indirect and direct reprogramming approaches for cardiac regenerative medicine. A third section discusses the main techniques for the characterization of stem cell differentiation and fibroblast reprogramming into CMs. Another section describes the main biomaterials investigated for stem cell differentiation and fibroblast reprogramming into CMs. Finally, a critical analysis of the scientific literature is presented for an efficient generation of functional CMs. The authors underline the need for biomimetic, reproducible and scalable biomaterial platforms and their integration with external physical stimuli in controlled culture microenvironments for the generation of functional CMs.


1994 ◽  
Vol 179 (3) ◽  
pp. 1023-1028 ◽  
Author(s):  
P Melotti ◽  
D H Ku ◽  
B Calabretta

The CD34 antigen defines a subset of hematopoietic progenitor cells with self-renewal capacity and the ability to reconstitute hematopoiesis in irradiated primates and marrow-ablated humans, but its function remains unknown. The c-myb protooncogene plays a fundamental role in hematopoiesis, most likely via its transcriptional regulator function. We report that c-myb protein transactivates the CD34 promoter via specific interaction with multiple Myb binding sites in the 5' flanking region of the gene and induces expression of the endogenous CD34 mRNA in rodent fibroblasts. Also, constitutive expression of c-myb in CD34-negative human glioblastoma cells induces expression of CD34 mRNA and synthesis of the surface membrane antigen. These data directly demonstrate that c-myb regulates the expression of the hematopoietic stem cell antigen CD34 and raise the possibility that c-myb regulates hematopoiesis inducing a cascade of differentiation-related events.


PLoS ONE ◽  
2015 ◽  
Vol 10 (8) ◽  
pp. e0133860 ◽  
Author(s):  
Helena C. Reinardy ◽  
Chloe E. Emerson ◽  
Jason M. Manley ◽  
Andrea G. Bodnar

Sign in / Sign up

Export Citation Format

Share Document