scholarly journals An Experimental Investigation of Sewage Sludge Gasification in a Fluidized Bed Reactor

2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
L. F. Calvo ◽  
A. I. García ◽  
M. Otero

The gasification of sewage sludge was carried out in a simple atmospheric fluidized bed gasifier. Flow and fuel feed rate were adjusted for experimentally obtaining an air mass : fuel mass ratio (A/F) of0.2<A/F<0.4. Fuel characterization, mass and power balances, produced gas composition, gas phase alkali and ammonia, tar concentration, agglomeration tendencies, and gas efficiencies were assessed. Although accumulation of material inside the reactor was a main problem, this was avoided by removing and adding bed media along gasification. This allowed improving the process heat transfer and, therefore, gasification efficiency. The heating value of the produced gas was 8.4 MJ/Nm, attaining a hot gas efficiency of 70% and a cold gas efficiency of 57%.

2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Ahmad F ◽  
◽  
Ahmad N ◽  
Asghar U ◽  
Ali A ◽  
...  

Converting rice husk into energy is a promising method of generating renewable energy and reducing greenhouse gas emissions. In this research rice hush is considered as biomass fuel. The characteristics of rice husk gasification were investigated at an Equivalence Ratio (ER) of 0.25–0.38 and a gasifier temperature of 750-870°C in 20 tons per day (TPD) using steam explosion process in fluidized bed gasifier system. Different operation conditions, temperatures and loads, are investigated for their effects on the compositions, calorific properties, gasification efficiencies of syngas. The effects of the critical parameters, namely, Steam-to-Biomass Ratio (S/B), Particle size variation and gasification temperature on the quality of the product gas as well as the gasifier cold gas efficiency were analyzed. This is the new finding in the research. The optimal conditions of the gasification operation were an ER of 0.20 and gasifier temperature of 800°C. The low heating value of the gas product and cold gas efficiency were 1390kcal/Nm³ and 75%, respectively. After passing the generated gas through the gas cleaning units, it was confirmed that the tar in the product gas was removed with an efficiency of 98%. The cleaned product gas was used for the operation of 420kW, gas engine. Pressure loss often occurred at the bottom of the gasifier during the gasification operation; we found that the agglomerates generated by the gasification process caused it. To prevent the pressure loss caused by the agglomerates, the stable control of temperature inside the gasifier is needed and an ash removal device remove agglomerates should be installed to maintain stable long-term operation. This paper leads towards the production of Syngas and further on the electricity from the rice husk, an eminent biomass, copiously available all around the world. Especially in Pakistan, the rice is used abundantly so the raw material is easily available. The gas is produced using the gasification process in dual fluidized gasifier. It is a wonderful alternative to the natural gas with high calorific value. The sulfur contents are quite less compared to natural gas. It also have a good correlation with environment as flue gases emission is negligible relative to other source like coal, wood, plastic, waste etc. Another benefit of this process is the waste management and pollution control. The results are developed by using the detailed analysis of the process values of plants which is generating electricity by rice husk gasification. We learned, all results revealed that the dual fluidized bed gasification is more economical and efficient method compared to all other methods for commercial scale production of syngas. Results are analyzed which imply that the biomass is more gigantic source which replace the fossil fuels and leads towards the green energy in a more economical way. This paper provides an overview of previous works on combustion and gasification of rice husk in atmospheric fluiuidized bed reactors and summarizes the state of the art knowledge. As the high ash content, low bulk density, p characteristics and low ash melting point makes the other types of reactors like grate furnaces and downdraft gasifers either inefficient or unsuitable for rice husk conversion to energy, the fluiuidized bed reactor seems to be the promising choice. The overview shows that the reported results are from only small bench or lab scale units. Although a combustion efficiency of about 80% can normally be attained; the reported values in the literature, which are more than 95%, seem to be in higher order. Combustion intensity of about 530kg/h/m² is reported. It is also technically feasible to gasify rice husk in a fluidized bed reactor to yield combustible producer gas, even with sufficient heating value for application in internal combustion engines.


Author(s):  
Miaomiao Niu ◽  
Baosheng Jin ◽  
Yaji Huang ◽  
Hongyan Wang ◽  
Qing Dong ◽  
...  

Abstract Gasification is a promising technology to utilize solid wastes. Co-gasification of high-ash sewage sludge and straw were studied in a fluidized bed using oxygen-enriched air. Several factors influencing co-gasification performance were investigated, including the blending ratio of straw (BR, 0–100 %), the oxygen percentage of enriched air (OP, 30.2–50 %) and the bed material type (high alumina bauxite, calcined dolomite and olivine). The results indicated that the proper increase in BR led to higher syngas yield and an increase in OP caused an increase in combustible gas components, both showing improvements for waste gasification. Correspondingly, the maximum cold gas efficiency was obtained at BR of 50 % and OP of 44.7 %, respectively. Additionally, calcined dolomite exhibited the maximum advantage in the reduction of heavy polycyclic aromatic hydrocarbons (PAHs), promoting the production of H2 and CO. The addition of high alumina bauxite was favored for improving syngas yield and gasification efficiency.


2012 ◽  
Vol 512-515 ◽  
pp. 575-578
Author(s):  
Hsien Chen ◽  
Chiou Liang Lin ◽  
Wun Yue Zeng ◽  
Zi Bin Xu

Catalysis was used to increase the H2 production, syngas heating value, enhanced carbon conversion efficiency and cold gas efficiency during gasification. Due to Cu and Zn were abundant in waste according to previous researches, this research discussed the effect of Cu and Zn on artificial waste gasification. The syngas composition and total lower heating value (LHV) were determined in this study. The results showed that the existence of Cu and Zn increased production of H2 and CO. However, the production of CH4 and CO2 decreased. At same time, total LHV was also increased. Additionally, the different Cu concentration affected gas composition and LHV, but the effect of Zn concentration was not significant.


2011 ◽  
Vol 13 (3) ◽  
pp. 180-185 ◽  
Author(s):  
Seong-Wan Kang ◽  
Jong-In Dong ◽  
Jong-Min Kim ◽  
Woo-Chan Lee ◽  
Won-Gu Hwang

Energies ◽  
2021 ◽  
Vol 14 (21) ◽  
pp. 7384
Author(s):  
M. Shahabuddin ◽  
Sankar Bhattacharya

This study assessed the entrained flow co-gasification characteristics of coal and biomass using thermodynamic equilibrium modelling. The model was validated against entrained flow gasifier data published in the literature. The gasification performance was evaluated under different operating conditions, such as equivalence ratio, temperature, pressure and coal to biomass ratio. It is observed that the lower heating value (LHV) and cold gas efficiency (CGE) increase with increasing temperature until the process reaches a steady state. The effect of pressure on syngas composition is dominant only at non-steady state conditions (<1100 °C). The variation in syngas composition is minor up to the blending of 50% biomass (PB50). However, the PB50 shows a higher LHV and CGE than pure coal by 12%and 18%, respectively. Overall, biomass blending of up to 50% favours gasification performance with an LHV of 12 MJ/kg and a CGE of 78%.


2020 ◽  
Vol 9 (1) ◽  
pp. 30-35
Author(s):  
Hendriyana Hendriyana

Rice husk is the waste from agriculture industries that has high potential to produce heat and electricity through the gasification process. Air suction mode is new development for updraft rice husk gasification, where blower are placed at output of gasifier. The objective of this research is to examine these new configuration at several equivalence ratio. The equivalence ratio was varied at 32% and 49% to study temperature profile on gasifier, producer gas volumetric flow rate, composition of producer gas, producer gas heating value, cold gas efficiency and carbon conversion. The time needed to consume rice husk and reach an oxidation temperature of more than 700oC for equivalence ratio of 49% is shorter than 32%. Producer gas rate production per unit weight of rice husk increase from  2.03 Nm3/kg and 2.36 Nm3/kg for equivalence ratio of 32% and 49%, respectively. Composition producer gas for equivalence ratio of 32% is 17.67% CO, 15.39% CO2, 2.87% CH4, 10.62% H2 and 53.45% N2 and 49% is 19.46% CO, 5.94% CO2, 0.90% CH4, 3.46% H2 and 70.24% N2. Producer gas heating value for equivalence ratio 32% and 49% is 4.73 MJ/Nm3 and 3.27 MJ/Nm3, respectively. Cold gas efficiency of the gasifier at equivalence ratio 32% is 69% and at 49% is 55%.


Energies ◽  
2019 ◽  
Vol 13 (1) ◽  
pp. 102 ◽  
Author(s):  
Francesco Gallucci ◽  
Raffaele Liberatore ◽  
Luca Sapegno ◽  
Edoardo Volponi ◽  
Paolo Venturini ◽  
...  

This work aims to study the influence of an oxidant agent on syngas quality. A series of tests using air and steam as oxidant agents have been performed and the results compared with those of a pyrolysis test used as a reference. Tests were carried out at Sapienza University of Rome, using an updraft reactor. The reactor was fed with hazelnut shells, waste biomass commonly available in some parts of Italy. Temperature distribution, syngas composition and heating value, and producible energy were measured. Air and steam gasification tests produced about the same amount of syngas flow, but with a different quality. The energy flow in air gasification had the smallest measurement during the experiments. On the contrary, steam gasification produced a syngas flow with higher quality (13.1 MJ/Nm3), leading to the best values of energy flow (about 5.4 MJ/s vs. 3.3 MJ/s in the case of air gasification). From the cold gas efficiency point of view, steam gasification is still the best solution, even considering the effect of the enthalpy associated with the steam injected within the gasification reactor.


Energies ◽  
2020 ◽  
Vol 13 (8) ◽  
pp. 2081
Author(s):  
Md Tanvir Alam ◽  
Se-Won Park ◽  
Sang-Yeop Lee ◽  
Yean-Ouk Jeong ◽  
Anthony De Girolamo ◽  
...  

Solid recovered fuel (SRF) residue, which is leftovers from the SRF manufacturing process, usually is discarded in landfill because of its low heating value and high ash and moisture content. However, it could be used as a fuel after mechanical and biological treatment. Gasification experiments were conducted on treated SRF residue (TSRFR) to assess the viability of syngas production. Efforts were also made to improve the gasification performance by adding low-cost natural minerals such as dolomite and lime as bed material, and by blending with biomass waste. In the case of additive mineral tests, dolomite showed better performance compared to lime, and in the case of biomass blends, a 25 wt% pine sawdust blend with TSRFR showed the best performance. Finally, as an appropriate condition, a combined experiment was conducted at an equivalence ratio (ER) of 0.2 using a 25 wt% pine sawdust blend with TSRFR as a feedstock and dolomite as the bed material. The highest dry gas yield (1.81 Nm3/kg), with the highest amount of syngas (56.72 vol%) and highest lower heating value (9.55 MJ/Nm3) was obtained in this condition. Furthermore, the highest cold gas efficiency (48.64%) and carbon conversion rate (98.87%), and the lowest residue yield (11.56%), tar (0.95 g/Nm3), and gas pollutants content was observed.


Sign in / Sign up

Export Citation Format

Share Document