scholarly journals Effect of Equivalence Ratio on the Rice Husk Gasification Performance Using Updraft Gasifier with Air Suction Mode

2020 ◽  
Vol 9 (1) ◽  
pp. 30-35
Author(s):  
Hendriyana Hendriyana

Rice husk is the waste from agriculture industries that has high potential to produce heat and electricity through the gasification process. Air suction mode is new development for updraft rice husk gasification, where blower are placed at output of gasifier. The objective of this research is to examine these new configuration at several equivalence ratio. The equivalence ratio was varied at 32% and 49% to study temperature profile on gasifier, producer gas volumetric flow rate, composition of producer gas, producer gas heating value, cold gas efficiency and carbon conversion. The time needed to consume rice husk and reach an oxidation temperature of more than 700oC for equivalence ratio of 49% is shorter than 32%. Producer gas rate production per unit weight of rice husk increase from  2.03 Nm3/kg and 2.36 Nm3/kg for equivalence ratio of 32% and 49%, respectively. Composition producer gas for equivalence ratio of 32% is 17.67% CO, 15.39% CO2, 2.87% CH4, 10.62% H2 and 53.45% N2 and 49% is 19.46% CO, 5.94% CO2, 0.90% CH4, 3.46% H2 and 70.24% N2. Producer gas heating value for equivalence ratio 32% and 49% is 4.73 MJ/Nm3 and 3.27 MJ/Nm3, respectively. Cold gas efficiency of the gasifier at equivalence ratio 32% is 69% and at 49% is 55%.

2019 ◽  
Vol 25 (4) ◽  
pp. 329-339
Author(s):  
João Cardoso ◽  
Valter Silva ◽  
Daniela Eusébio ◽  
Tiago Carvalho ◽  
Paulo Brito

A 2-D numerical simulation approach was implemented to describe the gasification process of olive pomace in a bubbling fluidized bed reactor. The numerical model was validated under experimental gasification runs performed in a 250 kWth quasi-industrial biomass gasifier. The producer gas composition, H2/CO ratio, CH4/H2 ratio, cold gas efficiency and tar content were evaluated. The most suitable applications for the potential use of olive pomace as an energy source in Portugal were assessed based on the results. A techno-economic study and a Monte Carlo sensitivity analysis were performed to assess the feasibility and foresee the main investment risks in conducting olive pomace gasification in small facilities. Results indicated that olive pomace gasification is more suitable for domestic purposes. The low cold gas efficiency of the process (around 20%) turns the process more appropriate for producer gas production in small cogeneration facilities. Olive pomace gasification solutions showed viable economic performance in small cogeneration solutions for agriculture waste-to-energy recovery in olive oil agriculture cooperatives. However, the slender profitability may turn the project unattractive for most investors from a financial standpoint.


Author(s):  
Mehdi Borji ◽  
Kazem Atashkari ◽  
Saba Ghorbani ◽  
Nader Nariman-Zadeh

Numerical analysis of combined heat and power plant consisting of a solid oxide fuel cell and autothermal gasification system has been made for several cases of different composition of fuel relevant to air and steam blown biomass gasification process. Wet wood is fed to the fixed-bed downdraft gasifier and gaseous fuel is produced then after gas cleaning and conditioning can be used in solid oxide fuel cells. The integrated plant is investigated by thermodynamic modeling combining a one-dimensional model of direct internal intermediate planar type solid oxide fuel cell which allows monitoring the temperature gradients along the cell length in different operating conditions and a zero-dimensional autothermal gasifier. The solid oxide fuel cell mathematical model is developed based on gas species mass balances, energy balance, and an electrochemical model beside the kinetics describing internal reforming and water-gas shift reactions. Such a model can be integrated with adiabatic gasification modeling which includes atom balance conservation for assumed gas species and a modified thermodynamic equilibrium analysis. Both gasifier and solid oxide fuel cell models are verified against experimental and previous numerical data available in the literature. Two main parameters, namely modified equivalence ratio and air-to-steam ratio are investigated and the most important cycle parameters such as power, electric and combined heat and power efficiencies, temperature gradients along the cell length, and mole fractions of gaseous species of the produced fuel are analyzed. It has been revealed that any increase in air-to-steam ratio at fixed modified equivalence ratio leads to penalty on cold gas efficiency of the gasifier and both solid oxide fuel cell and combined heat and power plant electric efficiencies. Increased air-to-steam ratio at constant modified equivalence ratio produces a mixture with lower low heating value, higher steam-to-carbon ratio, rich in CO and lower in CH4 content. Under this condition the operating temperature of the cycle and solid oxide fuel cell increases and consequently improves the operating voltage of the cell and combined heat and power efficiency of the plant. On the other hand, results show that gasification with increased modified equivalence ratio at constant air-to-steam ratio produces mixtures richer in CH4 and CO, poorer in H2 with higher low heating value and cold gas efficiency, and lower steam-to-carbon ratio. Such condition improves the electric efficiency of the solid oxide fuel cell and the integrated plant, but the combined heat and power efficiency of the cycle decreases due to decreased operating temperature of the solid oxide fuel cell and the cycle.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Ahmad F ◽  
◽  
Ahmad N ◽  
Asghar U ◽  
Ali A ◽  
...  

Converting rice husk into energy is a promising method of generating renewable energy and reducing greenhouse gas emissions. In this research rice hush is considered as biomass fuel. The characteristics of rice husk gasification were investigated at an Equivalence Ratio (ER) of 0.25–0.38 and a gasifier temperature of 750-870°C in 20 tons per day (TPD) using steam explosion process in fluidized bed gasifier system. Different operation conditions, temperatures and loads, are investigated for their effects on the compositions, calorific properties, gasification efficiencies of syngas. The effects of the critical parameters, namely, Steam-to-Biomass Ratio (S/B), Particle size variation and gasification temperature on the quality of the product gas as well as the gasifier cold gas efficiency were analyzed. This is the new finding in the research. The optimal conditions of the gasification operation were an ER of 0.20 and gasifier temperature of 800°C. The low heating value of the gas product and cold gas efficiency were 1390kcal/Nm³ and 75%, respectively. After passing the generated gas through the gas cleaning units, it was confirmed that the tar in the product gas was removed with an efficiency of 98%. The cleaned product gas was used for the operation of 420kW, gas engine. Pressure loss often occurred at the bottom of the gasifier during the gasification operation; we found that the agglomerates generated by the gasification process caused it. To prevent the pressure loss caused by the agglomerates, the stable control of temperature inside the gasifier is needed and an ash removal device remove agglomerates should be installed to maintain stable long-term operation. This paper leads towards the production of Syngas and further on the electricity from the rice husk, an eminent biomass, copiously available all around the world. Especially in Pakistan, the rice is used abundantly so the raw material is easily available. The gas is produced using the gasification process in dual fluidized gasifier. It is a wonderful alternative to the natural gas with high calorific value. The sulfur contents are quite less compared to natural gas. It also have a good correlation with environment as flue gases emission is negligible relative to other source like coal, wood, plastic, waste etc. Another benefit of this process is the waste management and pollution control. The results are developed by using the detailed analysis of the process values of plants which is generating electricity by rice husk gasification. We learned, all results revealed that the dual fluidized bed gasification is more economical and efficient method compared to all other methods for commercial scale production of syngas. Results are analyzed which imply that the biomass is more gigantic source which replace the fossil fuels and leads towards the green energy in a more economical way. This paper provides an overview of previous works on combustion and gasification of rice husk in atmospheric fluiuidized bed reactors and summarizes the state of the art knowledge. As the high ash content, low bulk density, p characteristics and low ash melting point makes the other types of reactors like grate furnaces and downdraft gasifers either inefficient or unsuitable for rice husk conversion to energy, the fluiuidized bed reactor seems to be the promising choice. The overview shows that the reported results are from only small bench or lab scale units. Although a combustion efficiency of about 80% can normally be attained; the reported values in the literature, which are more than 95%, seem to be in higher order. Combustion intensity of about 530kg/h/m² is reported. It is also technically feasible to gasify rice husk in a fluidized bed reactor to yield combustible producer gas, even with sufficient heating value for application in internal combustion engines.


2014 ◽  
Vol 699 ◽  
pp. 534-539 ◽  
Author(s):  
Bemgba Bevan Nyakuma ◽  
Mojtaba Mazangi ◽  
Tuan Amran Tuan Abdullah ◽  
Anwar Johari ◽  
Arshad Ahmad ◽  
...  

The gasification of EFB briquette was investigated in a fixed bed tubular reactor to examine the effects of temperature on gas composition, heating value and cold conversion efficiency.The resultsrevealedthat H2 gas composition increased from 17.17 mol. % to 29.67 mol. % with increasing temperature from 600°C to 700°C at an equivalence ratio (ER) of 0.4. The heating value (HHV) of the producer gas increased from 6.18 MJ/Nm3 to 7.64 MJ/Nm3 and cold gas efficiency increased from 35.19% to 43.50% with increasing temperature during gasification. However, carbon conversion efficiency increased only marginally from 31.85% to 32.84% while a significant quantity of char (~ 21%) was produced per unit mass of EFB briquette. The results indicate that higher temperatures are required to increase the overall efficiency of EFB briquette gasification in a fixed bed tubular reactor.


2020 ◽  
Vol 143 (5) ◽  
Author(s):  
Krongkaew Laohalidanond ◽  
Somrat Kerdsuwan ◽  
Kiran Raj Goud Burra ◽  
Jinhu Li ◽  
Ashwani K. Gupta

Abstract Landfill reclamation is a good solution to utilize the wasted land occupied by municipal solid waste dumpsites or landfill sites. This also offers a good means to recover valuable materials and form environmentally benign green refuse-derived fuel (RDF) for use in power production. However, due to the heterogenous composition of the wastes, it is crucial to homogenize and upgrade the waste hydrocarbon fuel properties. Torrefaction is a thermochemical process that utilizes low temperature and inert environment to drive off the moisture and volatile fractions present in wastes to form valuable fuel. This upgraded RDF from reclaimed landfills offer high energy density and favorable hydrophobicity for use as a fuel feedstock in gasification to produce syngas for power generation. The objectives of this study are to first upgrading the reclaimed landfill wastes to RDF using torrefaction followed by its conversion to form clean syngas in a downdraft gasifier. This study examines the effect of air ratio on syngas heating value and cold gas efficiency. A comparison is made on the syngas produced from gasification using reclaimed landfill wastes and torrefied RDF. Experiments were conducted using a 10 kg/h lab-scale downdraft gasifier. The air ratios examined were 0.22, 0.27, and 0.32. The results showed an optimum air ratio of 0.27 operated with a gasifier using torrefied RDF. The results showed improved syngas quality, in terms of syngas composition, lower heating value, and cold gas efficiency. The lower heating value of 4.22 MJ/Nm3 and the cold gas efficiency of 65.84% were achieved. The results showed that landfill mining can provide ultimate solution to get rid of dumped wastes from landfills using torrefaction for high-quality fuel followed by the recovery of green and clean syngas energy using gasification.


2021 ◽  
pp. 0734242X2110039
Author(s):  
Natvaree Chommontha ◽  
Awassada Phongphiphat ◽  
Komsilp Wangyao ◽  
Suthum Patumsawad ◽  
Sirintornthep Towprayoon

Coconut agro-industry in the western region of Thailand generates a large amount of residues. This study investigated the energy production potential of discarded coconut petioles, with a focus on co-gasification with refuse-derived fuel (RDF). Gasification tests involving petioles, RDFs and their mixtures (25%, 50%, 75% or 100% by weight) were conducted in a laboratory-scale fixed bed reactor. Fuel samples of 5 g were gasified at 700°C–900°C for 60 minutes, using simulated air (79% N2 to 21% O2, by volume) as a gasifying agent. Gasification of petioles generated producer gas with lower heating values, estimated at 0.43–0.75 MJ Nm−3, while RDF produced 0.92–1.39 MJ Nm−3. Adding greater quantities of RDF to the fuel mixture resulted in an increase in the heating value of the producer gas and cold gas efficiency. The operating temperatures and gasifying-agent flow rates affected the efficiency of process differently, depending on the fuel composition. However, the maximum cold gas efficiency from both fuels was detected in tests conducted at 800°C. In co-gasification and pure refuse-derived-fuel tests, higher temperatures and gasifying-agent flow rates led to outputs with higher energy yields. Our findings suggested that co-gasification of petiole is a viable alternative waste-treatment technology for this region.


1985 ◽  
Vol 64 (9) ◽  
pp. 716-733
Author(s):  
Takehiko FURUSAWA ◽  
Toshinori KOJIMA ◽  
Seiji TOKAWA ◽  
Shuichi TANAKA ◽  
Takuya KAWANISHI ◽  
...  

2012 ◽  
Vol 512-515 ◽  
pp. 575-578
Author(s):  
Hsien Chen ◽  
Chiou Liang Lin ◽  
Wun Yue Zeng ◽  
Zi Bin Xu

Catalysis was used to increase the H2 production, syngas heating value, enhanced carbon conversion efficiency and cold gas efficiency during gasification. Due to Cu and Zn were abundant in waste according to previous researches, this research discussed the effect of Cu and Zn on artificial waste gasification. The syngas composition and total lower heating value (LHV) were determined in this study. The results showed that the existence of Cu and Zn increased production of H2 and CO. However, the production of CH4 and CO2 decreased. At same time, total LHV was also increased. Additionally, the different Cu concentration affected gas composition and LHV, but the effect of Zn concentration was not significant.


Energies ◽  
2021 ◽  
Vol 14 (21) ◽  
pp. 7384
Author(s):  
M. Shahabuddin ◽  
Sankar Bhattacharya

This study assessed the entrained flow co-gasification characteristics of coal and biomass using thermodynamic equilibrium modelling. The model was validated against entrained flow gasifier data published in the literature. The gasification performance was evaluated under different operating conditions, such as equivalence ratio, temperature, pressure and coal to biomass ratio. It is observed that the lower heating value (LHV) and cold gas efficiency (CGE) increase with increasing temperature until the process reaches a steady state. The effect of pressure on syngas composition is dominant only at non-steady state conditions (<1100 °C). The variation in syngas composition is minor up to the blending of 50% biomass (PB50). However, the PB50 shows a higher LHV and CGE than pure coal by 12%and 18%, respectively. Overall, biomass blending of up to 50% favours gasification performance with an LHV of 12 MJ/kg and a CGE of 78%.


Energies ◽  
2019 ◽  
Vol 13 (1) ◽  
pp. 102 ◽  
Author(s):  
Francesco Gallucci ◽  
Raffaele Liberatore ◽  
Luca Sapegno ◽  
Edoardo Volponi ◽  
Paolo Venturini ◽  
...  

This work aims to study the influence of an oxidant agent on syngas quality. A series of tests using air and steam as oxidant agents have been performed and the results compared with those of a pyrolysis test used as a reference. Tests were carried out at Sapienza University of Rome, using an updraft reactor. The reactor was fed with hazelnut shells, waste biomass commonly available in some parts of Italy. Temperature distribution, syngas composition and heating value, and producible energy were measured. Air and steam gasification tests produced about the same amount of syngas flow, but with a different quality. The energy flow in air gasification had the smallest measurement during the experiments. On the contrary, steam gasification produced a syngas flow with higher quality (13.1 MJ/Nm3), leading to the best values of energy flow (about 5.4 MJ/s vs. 3.3 MJ/s in the case of air gasification). From the cold gas efficiency point of view, steam gasification is still the best solution, even considering the effect of the enthalpy associated with the steam injected within the gasification reactor.


Sign in / Sign up

Export Citation Format

Share Document