scholarly journals Electron Transport Characteristics of Wurtzite GaN

2013 ◽  
Vol 2013 ◽  
pp. 1-6 ◽  
Author(s):  
F. M. Abou El-Ela ◽  
A. Z. Mohamed

A three-valley Monte Carlo simulation approach was used to investigate electron transport in wurtzite GaN such as the drift velocity, the drift mobility, the average electron energy, energy relaxation time, and momentum relaxation time at high electric fields. The simulation accounted for polar optical phonon, acoustic phonon, piezoelectric, intervalley scattering, and Ridley charged impurity scattering model. For the steady-state transport, the drift velocity against electric field showed a negative differential resistance of a peak value of 2.9×105 m/s at a critical electric field strength 180×105 V/m. The electron drift velocity relaxes to the saturation value of 1.5×105 m/s at very high electric fields. The electron velocities against time over wide range of electric fields are reported.

2013 ◽  
Vol 1577 ◽  
Author(s):  
Walid A. Hadi ◽  
Michael S. Shur ◽  
Stephen K. O’Leary

ABSTRACTStrong short electric field pulses are used to generate broadband terahertz radiation. Understanding the transport properties under such conditions is very important for the understanding of numerous terahertz photonic and electronic devices. In this paper, we report on transport simulations of the electrons within bulk wurtzite zinc oxide for pulsed high electric fields, with pulse durations of up to 400 fs. We focus on how key electron transport characteristics, namely the drift velocity and the corresponding average energy, vary with time since the onset of the pulse. For sufficiently high-field strength selections, we find that both of these parameters exhibit peaks. In addition, an electron drift velocity undershoot is observed following this peak. A contrast with the case of gallium nitride is considered; undershoot is not observed for the case of this material. Reasons for these differences in behavior are suggested.


Pressure has been used as the principal parameter in calculations of the fundamental vibrational frequencies of spherical drops of radius R , density ρ, and surface tension T carrying a charge Q or uncharged spheroidal drops of axial ratio a / b situated in a uniform electric field of strength E . Freely vibrating charged drops have a frequency f = f 0 ( 1 - Q 2 /16π R 3 T ) ½ , as shown previously by Rayleigh (1882) using energy considerations; f 0 is the vibrational frequency of non-electrified drops (Rayleigh 1879). The fundamental frequency of an uncharged drop in an electric field will decrease with increasing field strength and deformation a / b and will equal zero when E ( R )/ T ) ½ = 1.625 and a / b = 1.86; these critical values correspond to the disintegration conditions derived by Taylor (1964). An interferometric technique involving a laser confirmed the accuracy of the calculations concerned with charged drops. The vibration of water drops of radius around 2 mm was studied over a wide range of temperatures as they fell through electric fields either by suspending them in a vertical wind tunnel or allowing them to fall between a pair of vertical electrodes. Photographic analysis of the vibrations revealed good agreement between theory and experiment over the entire range of conditions studied even though the larger drops were not accurately spheroidal and the amplitude of the vibrations was large.


2015 ◽  
Vol 4 (2) ◽  
pp. 149-154 ◽  
Author(s):  
A. M. Prystai ◽  
V. O. Pronenko

Abstract. The study of the deep structure of the Earth's crust is of great interest for both applied (e.g. mineral exploration) and scientific research. For this the electromagnetic (EM) studies which enable one to construct the distribution of electrical conductivity in the Earth's crust are of great use. The most common method of EM exploration is magnetotelluric sounding (MT). This passive method of research uses a wide range of natural geomagnetic variations as a powerful source of electromagnetic induction in the Earth, producing telluric current variations there. It includes the measurements of variations of natural electric and magnetic fields in orthogonal directions at the surface of the Earth. By this, the measurements of electric fields are much more complicated metrological processes, and, namely, they limit the precision of MT prospecting. This is especially complicated at deep sounding when measurements of long periods are of interest. The increase in the accuracy of the electric field measurement can significantly improve the quality of MT data. Because of this, the development of a new version of an instrument for the measurements of electric fields at MT – both electric field sensors and the electrometer – with higher levels relative to the known instrument parameter level – was initiated. The paper deals with the peculiarities of this development and the results of experimental tests of the new sensors and electrometers included as a unit in the long-period magnetotelluric station LEMI-420 are given.


2008 ◽  
Vol 22 (22) ◽  
pp. 3915-3922 ◽  
Author(s):  
A. R. BINESH ◽  
H. ARABSHAHI ◽  
G. R. EBRAHIMI ◽  
M. REZAEE ROKN-ABADI

An ensemble Monte Carlo simulation has been used to model bulk electron transport at room and higher temperatures as a function of high electric fields. Electronic states within the conduction band valleys at the Γ1, U, M, Γ3 and K are represented by non-parabolic ellipsoidal valleys centred on important symmetry points of the Brillouin zone. The simulation shows that intervalley electron transfer plays a dominant role in GaN in high electric fields leading to a strongly inverted electron distribution and to a large negative differential conductance. Our simulation results have also shown that the electron velocity in GaN is less sensitive to temperature than in other III-V semiconductors like GaAs . So GaN devices are expected to be more tolerant to self-heating and high ambient temperature device modeling. Our steady state velocity-field characteristics are in fair agreement with other recent calculations.


1972 ◽  
Vol 25 (2) ◽  
pp. 231 ◽  
Author(s):  
DB Matthews

Electric fields at the metal-electrolyte interface are very high (of the order of 107 V/cm) and one intuitively expects that these fields should have a profound influence on the movement of charged species such as ions and electrons at the interface. Qualitatively, such field effects manifest themselves as deviations from linearity of Tafel plots or as a dependence of the symmetry factor on electrode potential. It is shown that Gurney's potential energy curve representation of charge transfer reactions yields only small changes in β over a wide range of potential, with the anharmonic (Morse) curves showing smaller changes than the harmonic (parabolic) curves. Superposition of the double layer electric field on these potential energy curves increases the curvature of the Tafel plots, but the effect is still not very large, being within the limits of uncertainty in determining the correct form of the potential energy curves. The effect of electric field on electron transfer is considered both from the viewpoint of change in electron transfer distance arising from a dependence of coordinates of the activated state on potential and from the viewpoint of a direct effect on the electron transfer barrier (analogous to field electron emission). The field emission effects are found to be even less than the effects of the field on the proton transfer potential energy barrier.


Author(s):  
Abhishek Basavanna ◽  
Prajakta Khapekar ◽  
Navdeep Singh Dhillon

Abstract The effect of applied electric fields on the behavior of liquids and their interaction with solid surfaces has been a topic of active interest for many decades. This has important implications in phase change heat transfer processes such as evaporation, boiling, and condensation. Although the effect of low to moderate voltages has been studied, there is a need to explore the interaction of high electric fields with liquid drops and bubbles, and their effect on heat transfer and phase change. In this study, we employ a high speed optical camera to study the dynamics of a liquid drop impacting a hot substrate under the application of high electric fields. Experimental results indicate a significant change in the pre- and post-impact behavior of the drop. Prior to impact, the applied electric field elongates the drop in the direction of the electric field. Post-impact, the recoil phase of the drop is significantly affected by charging effects. Further, a significant amount of micro-droplet ejection is observed with an increase in the applied voltage.


1988 ◽  
Vol 6 (1) ◽  
pp. 105-117 ◽  
Author(s):  
A. W. Ali

Air breakdown by avalanche ionization plays an important role in the electron beam and microwave propagations. For high electric fields and short pulse applications one needs avalanche ionization parameters for modeling and scaling of experimental devices. However, the breakdown parameters, i.e., the ionization frequency vs E/p (volt. cm−1. Torr−1) in air is uncertain for very high values of E/P. We review the experimental data for the electron drift velocity, the Townsend ionization coefficient in N2 and O2 and develop the ionization frequency and the collision frequency for momentum transfer in air. We construct the E/p vs Pτ diagram and show that our results are in better agreement with the most recent short pulse air breakdown experiments, compared to those predicted by the expression of Felsenthal & Proud (1965). This is because they extrapolate an expression for the drift velocity, linear in E/p, to high values of E/p. Experimentally the drift velocity varies as (E/p)½ in the region of E/p > 100.


Sign in / Sign up

Export Citation Format

Share Document