scholarly journals Active Vibration Control of a Nonlinear Beam with Self- and External Excitations

2013 ◽  
Vol 20 (6) ◽  
pp. 1033-1047 ◽  
Author(s):  
J. Warminski ◽  
M. P. Cartmell ◽  
A. Mitura ◽  
M. Bochenski

An application of the nonlinear saturation control (NSC) algorithm for a self-excited strongly nonlinear beam structure driven by an external force is presented in the paper. The mathematical model accounts for an Euler-Bernoulli beam with nonlinear curvature, reduced to first mode oscillations. It is assumed that the beam vibrates in the presence of a harmonic excitation close to the first natural frequency of the beam, and additionally the beam is self-excited by fluid flow, which is modelled by a nonlinear Rayleigh term for self-excitation. The self- and externally excited vibrations have been reduced by the application of an active, saturation-based controller. The approximate analytical solutions for a full structure have been found by the multiple time scales method, up to the first-order approximation. The analytical solutions have been compared with numerical results obtained from direct integration of the ordinary differential equations of motion. Finally, the influence of a negative damping term and the controller's parameters for effective vibrations suppression are presented.

Author(s):  
Jerzy Warmiński ◽  
Andrzej Teter

Parametric oscillations of a prismatic, thin-walled composite column with a channel section are considered in the article. The simply supported column is made of a seven-layer composite with a symmetric ply alignment. The non-linear problem of buckling is solved with Koiter’s asymptotic theory within the first-order approximation by adoption of a plate model. The asymptotic approximation leads to non-linear equations allowing evaluation of the two mode buckling effect. Parametric vibrations, produced by a periodically changing load component, are investigated near the principal parametric resonances. The approximate analytical solutions are determined by the multiple time scales of method. The influence of amplitude and frequency of parametric excitation on the structure response is investigated. An example bifurcation scenario and a possible transition to chaotic oscillations are also presented.


Author(s):  
Sotirios Natslavas ◽  
Petros Tratskas

Abstract In the first part of this work an analysis is presented on the dynamics of a two degree of freedom nonlinear mechanical oscillator. The model consists of a rigid body which rests on a foundation with nonlinear stiffness. This body can exhibit both vertical and rocking motions, which are coupled through the nonlinearities only. In the present study, attention is focused on the response of the system under external harmonic excitation of the vertical translation only, leading to conditions of subharmonic resonance of order three. Also, the model parameters are chosen so that its two linear natural frequencies are almost identical (1:1 internal resonance). For this case, the method of multiple time scales is first applied and a set of four coupled odes is derived, governing the amplitudes and phases of approximate motions of the system. Then, determination of approximate periodic steady state response of the oscillator is reduced to solving a set of four nonlinear algebraic equations. It is shown that besides linear and nonlinear single-mode response, two-mode response is also possible, due to the internal resonance. In addition, the stability of the various single- and two-mode periodic responses of the system is analyzed. In the last part of the work, the analytical findings are verified and complemented by numerical results. The main interest lies on identifying the effect of system parameters on the existence and stability of the predicted motions. The results of this study reveal patterns of appearance of these motions, which provide valuable help in the efforts to eliminate them. Finally, direct integration of the original equations of motion reveals the existence of other more complex motions, which coexist with the analytically predicted motions within the frequency ranges of interest.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Gorakh Nath

Abstract This paper presents the development of mathematical model to obtain the approximate analytical solutions for isothermal flows behind the strong shock (blast) wave in a van der Waals gas and small solid particles mixture. The small solid particles are continuously distributed in the mixture and the equilibrium conditions for flow are maintained. To derive the analytical solutions, the physical variables such as density, pressure, and velocity are expanded using perturbation method in power series. The solutions are derived in analytical form for first approximation, and for second order approximation the set of differential equations are also obtained. The effects of an increase in the problem parameters value on the physical variables are investigated for first order approximation. A comparison is also, made between the solution of cylindrical shock and spherical shock. It is found that the fluid density and fluid pressure become zero near the point or axis of symmetry in spherical or cylindrical symmetry, respectively, and therefore a vacuum is created near the point or axis of symmetry which is in tremendous conformity with the physical condition in laboratory to generate the shock wave.


2019 ◽  
Vol 24 (1) ◽  
pp. 199-211
Author(s):  
M. Yürüsoy ◽  
Ö.F. Güler

Abstract The steady-state magnetohydrodynamics (MHD) flow of a third-grade fluid with a variable viscosity parameter between concentric cylinders (annular pipe) with heat transfer is examined. The temperature of annular pipes is assumed to be higher than the temperature of the fluid. Three types of viscosity models were used, i.e., the constant viscosity model, space dependent viscosity model and the Reynolds viscosity model which is dependent on temperature in an exponential manner. Approximate analytical solutions are presented by using the perturbation technique. The variation of velocity and temperature profile in the fluid is analytically calculated. In addition, equations of motion are solved numerically. The numerical solutions obtained are compared with analytical solutions. Thus, the validity intervals of the analytical solutions are determined.


2014 ◽  
Vol 518 ◽  
pp. 60-65 ◽  
Author(s):  
Yury Rossikhin ◽  
Marina Shitikova

Dynamic behaviour of a nonlinear plate embedded in a fractional derivative viscoelastic medium and subjected to the conditions of the internal resonances two-to-one has been studied by Rossikhin and Shitikova in [1]. Nonlinear equations, the linear parts of which occur to be coupled, were solved by the method of multiple time scales. A new approach proposed in this paper allows one to uncouple the linear parts of equations of motion of the plate, while the same method, the method of multiple time scales, has been utilized for solving nonlinear equations. The new approach enables one to find a new type of the internal resonanse, i.e., one-to-one-to-two, as well as to solve the problems of vibrations of thin bodies more efficiently.


Author(s):  
Clark C. McGehee ◽  
Zach C. Ballard ◽  
Brian P. Mann

The equations of motion for a horizontal pendulum mounted to a rocking platform are developed. Equilibrium conditions are found as a function of the platform tilt angle. The equations are transformed to describe motion about the shifting equilibrium point, and an approximation for the amplitude and phase correction of the solution is developed using the method of averaging. This approximation is used to construct an iterative map that describes the pendulum angle and rotational velocity between each instance of platform rocking. Approximate analytical solutions are compared to numerical and experimental results, and ongoing work is discussed.


Author(s):  
Jiangchuan Niu ◽  
Zhishuang Zhao ◽  
Yongjun Shen ◽  
Shaopu Yang

Abstract Computer numerical control (CNC) worktable is the most important part of CNC machines. The CNC worktable exhibits complex nonlinear dynamic behaviors in the milling process. The physical model and mathematical model of CNC worktable are presented, where the nonlinear factors such as clearance and friction are considered. The primary resonance of computer numerical control worktable with clearance and friction under harmonic excitation is investigated. The approximate analytical solution of primary resonance is obtained by using the averaging method. The stability condition of the steady-state solution is also exhibited. It is found that the clearance affects the dynamic characteristics of the system in the form of equivalent nonlinear stiffness, and the friction coefficient acts in the form of equivalent nonlinear damping. The correctness of the approximate analytical solutions is verified by comparing the numerical results with the approximate analytical solutions. The approximate analytical solution is in good agreement with its corresponding numerical solution. The effects of clearance and friction on the dynamic characteristics of the system are analyzed in detail. The stick-slip vibration induced by friction is also analyzed by phase portrait at low feed velocity of machine tool. The results can provide a reference for the dynamic analysis of CNC worktable.


2014 ◽  
Vol 595 ◽  
pp. 105-110 ◽  
Author(s):  
Yury Rossikhin ◽  
Marina Shitikova

Dynamic behaviour of a nonlinear plate embedded in a fractional derivative viscoelastic medium and subjected to the conditions of the combinational internal resonances of the additive and difference types has been studied by Rossikhin and Shitikova in [1]. Nonlinear equations, the linear parts of which occur to be coupled, were solved by the method of multiple time scales. A new approach proposed in [2] allows one to uncouple the linear parts of equations of motion of the plate, while the same method, the method of multiple time scales, has been utilized for solving nonlinear equations. The new approach enables one to find an additional combinational resonance of the additive-difference type, as well as to solve the problems of vibrations of thin bodies more efficiently.


2005 ◽  
Vol 33 (2) ◽  
pp. 149-176 ◽  
Author(s):  
D. I. M. Forehand ◽  
M. P. Cartmell ◽  
R. Khanin

The topic of multibody analysis deals with the automatic generation and subsequent solution of the equations of motion for a system of interconnected bodies. Many academic and industrial computer programs have been developed to carry out this task. However, although some of these programs can obtain the equations of motion in fully symbolic form, it is believed that all the existing programs for multibody analysis solve these equations numerically. The idea behind the research which underpins this paper is to select and implement a symbolic version of an existing multibody algorithm and then to integrate it with a recently developed solver which can obtain approximate analytical solutions to the equations of motion. The present paper deals with the selection of this multibody method. The theory behind the chosen method (the Roberson and Schwertassek algorithm) is described in some detail but also in a much more concise form than can be found in the literature. In addition, a fully worked example of the application of the multibody algorithm to a practical physical problem is given. Such examples are rare in the literature, and so it is intended that this paper can serve as a basis for enhanced didactic practice in this traditionally difficult subject area.


Sign in / Sign up

Export Citation Format

Share Document