scholarly journals Effects of Heat and Mass Transfer on MHD Peristaltic Flow of a Non-Newtonian Fluid through a Porous Medium between Two Coaxial Cylinders

2013 ◽  
Vol 2013 ◽  
pp. 1-11 ◽  
Author(s):  
Abeer A. Shaaban ◽  
Mohamed Y. Abou-zeid

We investigated the influence of heat and mass transfer on the peristaltic flow of magnetohydrodynamic Eyring-Powell fluid under low Reynolds number and long-wavelength approximation. The fluid flows between two infinite cylinders; the inner tube is uniform, rigid, and rest, while the outer flexible tube has a sinusoidal wave traveling down its wall. The governing equations are solved numerically using finite-difference technique. The velocity, temperature, and concentration distribution are obtained. The features of flow characteristics are analyzed by plotting graphs and discussed in detail.

2012 ◽  
Vol 18 (3) ◽  
pp. 483-493 ◽  
Author(s):  
S. Srinivas ◽  
R. Muthuraj ◽  
J. Sakina

This note deals with the influence of heat and mass transfer on peristaltic flow of an viscous fluid with wall slip condition. The flow is investigated in a wave frame of reference moving with the velocity of the wave. The channel asymmetry is produced by choosing the peristaltic wave train on the walls to have different amplitude and phase. The momentum and energy equations have been linearized under the assumption of long-wavelength approximation. The arising equations are solved by perturbation technique and the expressions for Temperature, Concentration, Velocity and Stream function are constructed. Graphical results are sketched for various embedded parameters and discussed in detail.


2015 ◽  
Vol 2015 ◽  
pp. 1-9 ◽  
Author(s):  
M. Kothandapani ◽  
J. Prakash ◽  
V. Pushparaj

This paper describes the peristaltic flow of an incompressible viscous fluid in a tapered asymmetric channel with heat and mass transfer. The fluid is electrically conducting fluid in the presence of a uniform magnetic field. The propagation of waves on the nonuniform channel walls to have different amplitudes and phase but with the same speed is generated the tapered asymmetric channel. The assumptions of low Reynolds number and long wavelength approximations have been used to simplify the complicated problem into a relatively simple problem. Analytical expressions for velocity, temperature, and concentration have been obtained. Graphically results of the flow characteristics are also sketched for various embedded parameters of interest entering the problem and interpreted.


2020 ◽  
pp. 854-869
Author(s):  
Rabiha S. Kareem ◽  
Ahmed M. Abdulhadi

In this paper, we study the impacts of variable viscosity , heat and mass transfer on magneto hydrodynamic (MHD) peristaltic flow in a asymmetric tapered inclined channel with porous medium . The viscosity is considered as a function of temperature. The slip conditions at the walls were taken into consideration. SmallReynolds number and the long wavelength approximations were used to simplify the governing equations. A comparison between the two velocities in cases of slip and no-slip was plotted. It was observed that the behavior of the velocity differed in the two applied models for some parameters. Mathematica software was used to estimate the exact solutions of temperature and concentration profiles. The resolution of the equations to the momentum was based on the perturbation method to find the axial velocity, pressure gradient and trapping phenomenon. The influences of the various flow parameters of the problem on these distributions were debated and proved graphically by figures.


2010 ◽  
Vol 65 (12) ◽  
pp. 1121-1127 ◽  
Author(s):  
Tasawar Hayat ◽  
Najma Saleem ◽  
Awatif A. Hendi

An analysis has been carried out for peristaltic flow and heat transfer of a Carreau fluid in an asymmetric channel with slip effect. The governing problem is solved under long wavelength approximation. The variations of pertinent dimensionless parameters on temperature are discussed. Pumping and trapping phenomena are studied.


2015 ◽  
Vol 70 (7) ◽  
pp. 513-520 ◽  
Author(s):  
Ehnber Naheed Maraj ◽  
Sohail Nadeem

AbstractThe present work is the mathematical investigation of peristaltic flow of Rabinowitsch fluid in a curved channel. The current problem is modeled and solutions for non-dimensional differential equation are obtained under low Reynolds number and long wavelength approximation. The effects of long lasting non-dimensional parameters on exact solution for velocity profile, pressure rise and shear stresses are studied graphically in the last section. Tables are also incorporated for shear stresses at the walls of the curved channel.


2014 ◽  
Vol 10 (3) ◽  
pp. 399-415 ◽  
Author(s):  
A.M. Abd-Alla ◽  
S.M. Abo-Dahab ◽  
A. Kilicman ◽  
R.D. El-Semiry

Purpose – The purpose of this paper is to investigate the peristaltic flow of an incompressible Newtonian fluid in a channel with compliant walls. The effects of rotation and heat and mass transfer are also taken into account. The governing equations of two dimensional fluid have been simplified under long wavelength and low Reynolds number approximation. An exact solutions is presented for the stream function, temperature, concentration field, velocity and heat transfer coefficient. Design/methodology/approach – The effect of the concentration distribution, heat and mass transfer and rotation on the wave frame are analyzed theoretically and computed numerically. Numerical results are given and illustrated graphically in each case considered. Comparison was made with the results obtained in the presence and absence of rotation and heat and mass transfer. Findings – The results indicate that the effect of the permeability and rotation are very pronounced in the phenomena. Originality/value – The objective of the present analysis is to analyze the effects of rotation, heat and mass transfer and compliant walls on the peristaltic flow of a viscous fluid.


2013 ◽  
Vol 68 (12) ◽  
pp. 751-758 ◽  
Author(s):  
Tasawar Hayat ◽  
Saima Noreen ◽  
Muhammad Qasim

In this paper, we discuss the effects of heat and mass transfer on the peristaltic flow in the presence of an induced magnetic field. Constitutive equations of a Phan-Thien-Tanner fluid are utilized in the mathematical description. Mathematical modelling is based upon the laws of mass, linear momentum, energy, and concentration. Relevant equations are simplified using long wavelength and low Reynolds number assumptions. A series solution is presented for small Weissenberg number. Variations of emerging parameters embedded in the flow system are discussed.


2015 ◽  
Vol 09 (01) ◽  
pp. 1650010 ◽  
Author(s):  
Maryiam Javed ◽  
T. Hayat ◽  
A. Alsaedi

This paper addresses the peristaltic flow of magnetohydrodynamic viscous fluid in an inclined compliant wall channel. Different wave amplitudes and phases ensure asymmetry in the channel flow configuration. Simultaneous effects of heat and mass transfer are also considered. Viscous dissipation effect is present. The flow and heat transfer are investigated under long wavelength and low Reynolds number assumption. The expressions for stream function, axial velocity, temperature and concentration are obtained. The solution expressions for physical quantities are sketched and discussed. It is found that Brinkman and Hartman numbers have reverse effect on the temperature.


2014 ◽  
Vol 07 (03) ◽  
pp. 1450023 ◽  
Author(s):  
M. Awais ◽  
S. Farooq ◽  
H. Yasmin ◽  
T. Hayat ◽  
A. Alsaedi

Magnetohydrodynamic peristaltic flow of Jeffery fluid in an asymmetric channel is addressed. The channel walls satisfy the convective conditions. Asymmetry here is considered due to wave trains of different amplitudes and phases. Solutions for the velocity, temperature and pressure gradient are obtained using long wavelength approximation. Plots reflecting the impact of various parameters of interest are shown and examined.


2017 ◽  
Vol 13 (4) ◽  
pp. 648-663
Author(s):  
A.M. Abd-Alla ◽  
S.M. Abo-Dahab ◽  
M. Elsagheer

Purpose The purpose of this paper is to predict the effects of magnetic field, heat and mass transfer and rotation on the peristaltic flow of an incompressible Newtonian fluid in a channel with compliant walls. The whole system is in a rotating frame of reference. Design/methodology/approach The governing equations of two-dimensional fluid have been simplified under long wavelength and low Reynolds number approximation. The solutions are carried out for the stream function, temperature, concentration field, velocity and heat transfer coefficient. Findings The results indicate that the effects of permeability, magnetic field and rotation are very pronounced in the phenomena. Impacts of various involved parameters appearing in the solutions are carefully analyzed. Originality/value The effect of the concentration distribution, heat and mass transfer and rotation on the wave frame is analyzed theoretically and computed numerically. Numerical results are given and illustrated graphically in each case considered. A comparison was made with the results obtained in the presence and absence of rotation, magnetic field and heat and mass transfer.


Sign in / Sign up

Export Citation Format

Share Document