scholarly journals Assessment of Aurora a Kinase Expression in Breast Cancer: A Tool for Early Diagnosis?

2013 ◽  
Vol 34 (2) ◽  
pp. 63-69 ◽  
Author(s):  
Imen Ferchichi ◽  
Samia Sassi Hannachi ◽  
Amal Baccar ◽  
Raja Marrakchi Triki ◽  
Jean Yves Cremet ◽  
...  

Aurora A kinase is overexpressed in many cancers but the status of this protein in the breast cancer often varies. We investigate the expression and localization of Aurora A protein in relation with tumor emergence and progression in breast cancer. Aurora A kinase status was evaluated in 107 patients using immunohistochemistry. The experimental findings showed that high expression of the Aurora A protein was correlated with elevated nuclear grade, low expression of progesterone receptor and positive nodal status. The experimental results showed also that the localization of this kinase shifts from cytoplasm in non malignant adjacent tissue to both cytoplasmic and nuclear compartments in tumoral tissue, suggesting an oncogenic role of the nuclear accumulation. We have, furthermore, detected the overexpression of this protein in non malignant adjacent tissue. The expression of the Aurora A kinase in non malignant tissue may represent an earlier diagnosis tool for breast cancer.

2020 ◽  
Vol 48 (3) ◽  
pp. 1243-1253 ◽  
Author(s):  
Sukriti Kapoor ◽  
Sachin Kotak

Cellular asymmetries are vital for generating cell fate diversity during development and in stem cells. In the newly fertilized Caenorhabditis elegans embryo, centrosomes are responsible for polarity establishment, i.e. anterior–posterior body axis formation. The signal for polarity originates from the centrosomes and is transmitted to the cell cortex, where it disassembles the actomyosin network. This event leads to symmetry breaking and the establishment of distinct domains of evolutionarily conserved PAR proteins. However, the identity of an essential component that localizes to the centrosomes and promotes symmetry breaking was unknown. Recent work has uncovered that the loss of Aurora A kinase (AIR-1 in C. elegans and hereafter referred to as Aurora A) in the one-cell embryo disrupts stereotypical actomyosin-based cortical flows that occur at the time of polarity establishment. This misregulation of actomyosin flow dynamics results in the occurrence of two polarity axes. Notably, the role of Aurora A in ensuring a single polarity axis is independent of its well-established function in centrosome maturation. The mechanism by which Aurora A directs symmetry breaking is likely through direct regulation of Rho-dependent contractility. In this mini-review, we will discuss the unconventional role of Aurora A kinase in polarity establishment in C. elegans embryos and propose a refined model of centrosome-dependent symmetry breaking.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Chen Hang ◽  
Shanojie Zhao ◽  
Tiejun Wang ◽  
Yan Zhang

Abstract Background Breast cancer (BrCa) is the most common female malignancy worldwide and has the highest morbidity among all cancers in females. Unfortunately, the mechanisms of BrCa growth and metastasis, which lead to a poor prognosis in BrCa patients, have not been well characterized. Methods Immunohistochemistry (IHC) was performed on a BrCa tissue microarray (TMA) containing 80 samples to evaluate ubiquitin protein ligase E3C (UBE3C) expression. In addition, a series of cellular experiments were conducted to reveal the role of UBE3C in BrCa. Results In this research, we identified UBE3C as an oncogenic factor in BrCa growth and metastasis for the first time. UBE3C expression was upregulated in BrCa tissues compared with adjacent breast tissues. BrCa patients with high nuclear UBE3C expression in tumors showed remarkably worse overall survival (OS) than those with low nuclear expression. Knockdown of UBE3C expression in MCF-7 and MDA-MB-453 BrCa cells inhibited cell proliferation, migration and invasion in vitro, while overexpression of UBE3C in these cells exerted the opposite effects. Moreover, UBE3C promoted β-catenin nuclear accumulation, leading to the activation of the Wnt/β-catenin signaling pathway in BrCa cells. Conclusion Collectively, these results imply that UBE3C plays crucial roles in BrCa development and progression and that UBE3C may be a novel target for the prevention and treatment of BrCa.


Oncogene ◽  
2021 ◽  
Author(s):  
Kristina M. Whately ◽  
Maria A. Voronkova ◽  
Abha Maskey ◽  
Jasleen Gandhi ◽  
Juergen Loskutov ◽  
...  

2020 ◽  
Vol 16 (8) ◽  
pp. 1388-1402
Author(s):  
Wei Xu ◽  
Minghua Huang ◽  
Jia Guo ◽  
Huiting Zhang ◽  
Depeng Wang ◽  
...  

2011 ◽  
Vol 1 (2) ◽  
pp. 61-65 ◽  
Author(s):  
Romina Ines Cervigni ◽  
Maria Luisa Barretta ◽  
Angela Persico ◽  
Daniela Corda ◽  
Antonino Colanzi

2001 ◽  
Vol 155 (7) ◽  
pp. 1109-1116 ◽  
Author(s):  
Eva Hannak ◽  
Matthew Kirkham ◽  
Anthony A. Hyman ◽  
Karen Oegema

Centrosomes mature as cells enter mitosis, accumulating γ-tubulin and other pericentriolar material (PCM) components. This occurs concomitant with an increase in the number of centrosomally organized microtubules (MTs). Here, we use RNA-mediated interference (RNAi) to examine the role of the aurora-A kinase, AIR-1, during centrosome maturation in Caenorhabditis elegans. In air-1(RNAi) embryos, centrosomes separate normally, an event that occurs before maturation in C. elegans. After nuclear envelope breakdown, the separated centrosomes collapse together, and spindle assembly fails. In mitotic air-1(RNAi) embryos, centrosomal α-tubulin fluorescence intensity accumulates to only 40% of wild-type levels, suggesting a defect in the maturation process. Consistent with this hypothesis, we find that AIR-1 is required for the increase in centrosomal γ-tubulin and two other PCM components, ZYG-9 and CeGrip, as embryos enter mitosis. Furthermore, the AIR-1–dependent increase in centrosomal γ-tubulin does not require MTs. These results suggest that aurora-A kinases are required to execute a MT-independent pathway for the recruitment of PCM during centrosome maturation.


Oncotarget ◽  
2020 ◽  
Vol 11 (46) ◽  
pp. 4306-4324
Author(s):  
Adewale Oluwaseun Fadaka ◽  
Nicole Remaliah Samantha Sibuyi ◽  
Abram Madimabe Madiehe ◽  
Mervin Meyer

Sign in / Sign up

Export Citation Format

Share Document