scholarly journals Impact of a Diagnostic Pressure Equation Constraint on Tornadic Supercell Thunderstorm Forecasts Initialized Using 3DVAR Radar Data Assimilation

2013 ◽  
Vol 2013 ◽  
pp. 1-12 ◽  
Author(s):  
Guoqing Ge ◽  
Jidong Gao ◽  
Ming Xue

A diagnostic pressure equation constraint has been incorporated into a storm-scale three-dimensional variational (3DVAR) data assimilation system. This diagnostic pressure equation constraint (DPEC) is aimed to improve dynamic consistency among different model variables so as to produce better data assimilation results and improve the subsequent forecasts. Ge et al. (2012) described the development of DPEC and testing of it with idealized experiments. DPEC was also applied to a real supercell case, but only radial velocity was assimilated. In this paper, DPEC is further applied to two real tornadic supercell thunderstorm cases, where both radial velocity and radar reflectivity data are assimilated. The impact of DPEC on radar data assimilation is examined mainly based on the storm forecasts. It is found that the experiments using DPEC generally predict higher low-level vertical vorticity than the experiments not using DPEC near the time of observed tornadoes. Therefore, it is concluded that the use of DPEC improves the forecast of mesocyclone rotation within supercell thunderstorms. The experiments using different weighting coefficients generate similar results. This suggests that DPEC is not very sensitive to the weighting coefficients.

2012 ◽  
Vol 29 (8) ◽  
pp. 1075-1092 ◽  
Author(s):  
Guoqing Ge ◽  
Jidong Gao ◽  
Ming Xue

Abstract A diagnostic pressure equation is incorporated into a storm-scale three-dimensional variational data assimilation (3DVAR) system in the form of a weak constraint in addition to a mass continuity equation constraint (MCEC). The goal of this diagnostic pressure equation constraint (DPEC) is to couple different model variables to help build a more dynamic consistent analysis, and therefore improve the data assimilation results and subsequent forecasts. Observational System Simulation Experiments (OSSEs) are first performed to examine the impact of the pressure equation constraint on storm-scale radar data assimilation using an idealized tornadic thunderstorm simulation. The impact of MCEC is also investigated relative to that of DPEC. It is shown that DPEC can improve the data assimilation results slightly after a given period of data assimilation. Including both DPEC and MCEC yields the best data assimilation results. Sensitivity tests show that MCEC is not very sensitive to the choice of its weighting coefficients in the cost function, while DPEC is more sensitive and its weight should be carefully chosen. The updated 3DVAR system with DPEC is further applied to the 5 May 2007 Greensburg, Kansas, tornadic supercell storm case assimilating real radar data. It is shown that the use of DPEC can speed up the spinup of precipitation during the intermittent data assimilation process and also improve the follow-on forecast in terms of the general evolution of storm cells and mesocyclone rotation near the time of observed tornado.


2007 ◽  
Vol 135 (10) ◽  
pp. 3381-3404 ◽  
Author(s):  
Qingnong Xiao ◽  
Juanzhen Sun

Abstract The impact of multiple–Doppler radar data assimilation on quantitative precipitation forecasting (QPF) is examined in this study. The newly developed Weather Research and Forecasting (WRF) model Advanced Research WRF (ARW) and its three-dimensional variational data assimilation system (WRF 3DVAR) are used. In this study, multiple–Doppler radar data assimilation is applied in WRF 3DVAR cycling mode to initialize a squall-line convective system on 13 June 2002 during the International H2O Project (IHOP_2002) and the ARW QPF skills are evaluated for the case. Numerical experiments demonstrate that WRF 3DVAR can successfully assimilate Doppler radial velocity and reflectivity from multiple radar sites and extract useful information from the radar data to initiate the squall-line convective system. Assimilation of both radial velocity and reflectivity results in sound analyses that show adjustments in both the dynamical and thermodynamical fields that are consistent with the WRF 3DVAR balance constraint and background error correlation. The cycling of the Doppler radar data from the 12 radar sites at 2100 UTC 12 June and 0000 UTC 13 June produces a more detailed mesoscale structure of the squall-line convection in the model initial conditions at 0000 UTC 13 June. Evaluations of the ARW QPF skills with initialization via Doppler radar data assimilation demonstrate that the more radar data in the temporal and spatial dimensions are assimilated, the more positive is the impact on the QPF skill. Assimilation of both radial velocity and reflectivity has more positive impact on the QPF skill than does assimilation of either radial velocity or reflectivity only. The improvement of the QPF skill with multiple-radar data assimilation is more clearly observed in heavy rainfall than in light rainfall. In addition to the improvement of the QPF skill, the simulated structure of the squall line is also enhanced by the multiple–Doppler radar data assimilation in the WRF 3DVAR cycling experiment. The vertical airflow pattern shows typical characteristics of squall-line convection. The cold pool and its related squall-line convection triggering process are better initiated in the WRF 3DVAR analysis and simulated in the ARW forecast when multiple–Doppler radar data are assimilated.


2017 ◽  
Vol 145 (2) ◽  
pp. 683-708 ◽  
Author(s):  
Xuanli Li ◽  
John R. Mecikalski ◽  
Derek Posselt

In this study, an ice-phase microphysics forward model has been developed for the Weather Research and Forecasting (WRF) Model three-dimensional variational data assimilation (WRF 3D-Var) system. Radar forward operators for reflectivity and the polarimetric variable, specific differential phase ( KDP), have been built into the ice-phase WRF 3D-Var package to allow modifications in liquid (cloud water and rain) and solid water (cloud ice and snow) fields through data assimilation. Experiments have been conducted to assimilate reflectivity and radial velocity observations collected by the Weather Surveillance Radar-1988 Doppler (WSR-88D) in Hytop, Alabama, for a mesoscale convective system (MCS) on 15 March 2008. Numerical results have been examined to assess the impact of the WSR-88D data using the ice-phase WRF 3D-Var radar data assimilation package. The main goals are to first demonstrate radar data assimilation with an ice-phase microphysics forward model and second to improve understanding on how to enhance the utilization of radar data in numerical weather prediction. Results showed that the assimilation of reflectivity and radial velocity data using the ice-phase system provided significant improvement especially in the mid- to upper troposphere. The improved initial conditions led to apparent improvement in the short-term precipitation forecast of the MCS. An additional experiment has been conducted to explore the assimilation of KDP data collected by the Advanced Radar for Meteorological and Operational Research (ARMOR). Results showed that KDP data have been successfully assimilated using the ice-phase 3D-Var package. A positive impact of the KDP data has been found on rainwater in the lower troposphere and snow in the mid- to upper troposphere.


2006 ◽  
Vol 21 (4) ◽  
pp. 502-522 ◽  
Author(s):  
Qingyun Zhao ◽  
John Cook ◽  
Qin Xu ◽  
Paul R. Harasti

Abstract A high-resolution radar data assimilation system is presented for high-resolution numerical weather prediction models. The system is under development at the Naval Research Laboratory for the Navy’s Coupled Ocean–Atmosphere Mesoscale Prediction System. A variational approach is used to retrieve three-dimensional dynamical fields of atmospheric conditions from multiple-Doppler radar observations of radial velocity within a limited area. The methodology is described along with a preliminary evaluation of the impact of assimilated radar data on model forecasts using a case study of a squall line that occurred along the east coast of the United States on 9 May 2003. Results from the experiments show a significant impact from the assimilated radar radial velocity data on the model forecast of not just dynamical but also hydrological fields at all model levels for the duration of the storm. A verification system has also been developed to assess the radar data assimilation impact, and the results show improvements in the three-dimensional wind forecasts but relatively small changes in the prediction of storm locations. This study highlights the need to develop a continuous radar data assimilation system to maximize the impact of the data.


2019 ◽  
Vol 148 (1) ◽  
pp. 63-81 ◽  
Author(s):  
Kevin Bachmann ◽  
Christian Keil ◽  
George C. Craig ◽  
Martin Weissmann ◽  
Christian A. Welzbacher

Abstract We investigate the practical predictability limits of deep convection in a state-of-the-art, high-resolution, limited-area ensemble prediction system. A combination of sophisticated predictability measures, namely, believable and decorrelation scale, are applied to determine the predictable scales of short-term forecasts in a hierarchy of model configurations. First, we consider an idealized perfect model setup that includes both small-scale and synoptic-scale perturbations. We find increased predictability in the presence of orography and a strongly beneficial impact of radar data assimilation, which extends the forecast horizon by up to 6 h. Second, we examine realistic COSMO-KENDA simulations, including assimilation of radar and conventional data and a representation of model errors, for a convectively active two-week summer period over Germany. The results confirm increased predictability in orographic regions. We find that both latent heat nudging and ensemble Kalman filter assimilation of radar data lead to increased forecast skill, but the impact is smaller than in the idealized experiments. This highlights the need to assimilate spatially and temporally dense data, but also indicates room for further improvement. Finally, the examination of operational COSMO-DE-EPS ensemble forecasts for three summer periods confirms the beneficial impact of orography in a statistical sense and also reveals increased predictability in weather regimes controlled by synoptic forcing, as defined by the convective adjustment time scale.


2020 ◽  
Vol 10 (16) ◽  
pp. 5493 ◽  
Author(s):  
Jingnan Wang ◽  
Lifeng Zhang ◽  
Jiping Guan ◽  
Mingyang Zhang

Satellite and radar observations represent two fundamentally different remote sensing observation types, providing independent information for numerical weather prediction (NWP). Because the individual impact on improving forecast has previously been examined, combining these two resources of data potentially enhances the performance of weather forecast. In this study, satellite radiance, radar radial velocity and reflectivity are simultaneously assimilated with the Proper Orthogonal Decomposition (POD)-based ensemble four-dimensional variational (4DVar) assimilation method (referred to as POD-4DEnVar). The impact is evaluated on continuous severe rainfall processes occurred from June to July in 2016 and 2017. Results show that combined assimilation of satellite and radar data with POD-4DEnVar has the potential to improve weather forecast. Averaged over 22 forecasts, RMSEs indicate that though the forecast results are sensitive to different variables, generally the improvement is found in different pressure levels with assimilation. The precipitation skill scores are generally increased when assimilation is carried out. A case study is also examined to figure out the contributions to forecast improvement. Better intensity and distribution of precipitation forecast is found in the accumulated rainfall evolution with POD-4DEnVar assimilation. These improvements are attributed to the local changes in moisture, temperature and wind field. In addition, with radar data assimilation, the initial rainwater and cloud water conditions are changed directly. Both experiments can simulate the strong hydrometeor in the precipitation area, but assimilation spins up faster, strengthening the initial intensity of the heavy rainfall. Generally, the combined assimilation of satellite and radar data results in better rainfall forecast than without data assimilation.


2014 ◽  
Vol 142 (11) ◽  
pp. 3998-4016 ◽  
Author(s):  
Dominik Jacques ◽  
Isztar Zawadzki

Abstract In radar data assimilation, statistically optimal analyses are sought by minimizing a cost function in which the variance and covariance of background and observation errors are correctly represented. Radar observations are particular in that they are often available at spatial resolution comparable to that of background estimates. Because of computational constraints and lack of information, it is impossible to perfectly represent the correlation of errors. In this study, the authors characterize the impact of such misrepresentations in an idealized framework where the spatial correlations of background and observation errors are each described by a homogeneous and isotropic exponential decay. Analyses obtained with perfect representation of correlations are compared to others obtained by neglecting correlations altogether. These two sets of analyses are examined from a theoretical and an experimental perspective. The authors show that if the spatial correlations of background and observation errors are similar, then neglecting the correlation of errors has a small impact on the quality of analyses. They suggest that the sampling noise, related to the precision with which analysis errors may be estimated, could be used as a criterion for determining when the correlations of errors may be omitted. Neglecting correlations altogether also yields better analyses than representing correlations for only one term in the cost function or through the use of data thinning. These results suggest that the computational costs of data assimilation could be reduced by neglecting the correlations of errors in areas where dense radar observations are available.


2010 ◽  
Vol 2010 ◽  
pp. 1-14 ◽  
Author(s):  
Qin Xu ◽  
Li Wei ◽  
Wei Gu ◽  
Jiandong Gong ◽  
Qingyun Zhao

A 3.5-dimensional variational method is developed for Doppler radar data assimilation. In this method, incremental analyses are performed in three steps to update the model state upon the background state provided by the model prediction. First, radar radial-velocity observations from three consecutive volume scans are analyzed on the model grid. The analyzed radial-velocity fields are then used in step 2 to produce incremental analyses for the vector velocity fields at two time levels between the three volume scans. The analyzed vector velocity fields are used in step 3 to produce incremental analyses for the thermodynamic fields at the central time level accompanied by the adjustments in water vapor and hydrometeor mixing ratios based on radar reflectivity observations. The finite element B-spline representations and recursive filter are used to reduce the dimension of the analysis space and enhance the computational efficiency. The method is applied to a squall line case observed by the phased-array radar with rapid volume scans at the National Weather Radar Testbed and is shown to be effective in assimilating the phased-array radar observations and improve the prediction of the subsequent evolution of the squall line.


2013 ◽  
Vol 6 (4) ◽  
pp. 7315-7353
Author(s):  
I. Maiello ◽  
R. Ferretti ◽  
S. Gentile ◽  
M. Montopoli ◽  
E. Picciotti ◽  
...  

Abstract. This work is a first assessment of the role of Doppler Weather radar (DWR) data in a mesoscale model for the prediction of a heavy rainfall. The study analyzes the event occurred during 19–22 May 2008 in the urban area of Rome. The impact of the radar reflectivity and radial velocity acquired from Monte Midia Doppler radar, on the assimilation into the Weather Research Forecasting (WRF) model version 3.2, is discussed. The goal is to improve the WRF high resolution initial condition by assimilating DWR data and using ECMWF analyses as First Guess thus improving the forecast of surface rainfall. Several experiments are performed using different set of Initial Conditions (ECMWF analyses and warm start or cycling) and a different assimilation strategy (3 h-data assimilation cycle). In addition, 3DVAR (three-dimensional variational) sensitivity tests to outer loops are performed for each of the previous experiment to include the non-linearity in the observation operators. In order to identify the best ICs, statistical indicators such as forecast accuracy, frequency bias, false alarm rate and equitable threat score for the accumulated precipitation are used. The results show that the assimilation of DWR data has a positive impact on the prediction of the heavy rainfall of this event, both assimilating reflectivity and radial velocity, together with conventional observations. Finally, warm start results in more accurate experiments as well as the outer loops strategy.


2012 ◽  
Vol 140 (7) ◽  
pp. 2147-2167 ◽  
Author(s):  
Xuanli Li ◽  
John R. Mecikalski

Abstract The dual-polarization (dual pol) Doppler radar can transmit/receive both horizontally and vertically polarized power returns. The dual-pol radar measurements have been shown to provide a more accurate precipitation estimate compared to traditional radars. In this study, the horizontal reflectivity ZH, differential reflectivity ZDR, specific differential phase KDP, and radial velocity VR collected by the C-band Advanced Radar for Meteorological and Operational Research (ARMOR) are assimilated for two convective storms. A warm-rain scheme is constructed to assimilate ZH, ZDR, and KDP data using the three-dimensional variational data assimilation (3DVAR) system with the Advanced Research Weather Research and Forecasting Model (ARW-WRF). The main goals of this study are first to demonstrate and compare the impact of various dual-pol variables in initialization of real case convective storms and second to test how the dual-pol fields may be better used with a 3DVAR system. The results show that the ZH, ZDR, KDP, and VR data substantially improve the initial condition for two mesoscale convective storms. Significant positive impacts on short-term forecast are obtained for both storms. Additionally, KDP and ZDR data assimilation is shown to be superior to ZH and ZDR and ZH-only data assimilation when the warm-rain microphysics is adopted. With the ongoing upgrade of the current Weather Surveillance Radar-1988 Doppler (WSR-88D) network to include dual-pol capabilities (started in early 2011), the findings from this study can be a helpful reference for utilizing the dual-pol radar data in numerical simulations of severe weather and related quantitative precipitation forecasts.


Sign in / Sign up

Export Citation Format

Share Document