scholarly journals Formulation and Characterization of Solid Dispersion Prepared by Hot Melt Mixing: A Fast Screening Approach for Polymer Selection

2014 ◽  
Vol 2014 ◽  
pp. 1-13 ◽  
Author(s):  
Arno A. Enose ◽  
Priya K. Dasan ◽  
H. Sivaramakrishnan ◽  
Sanket M. Shah

Solid dispersion is molecular dispersion of drug in a polymer matrix which leads to improved solubility and hence better bioavailability. Solvent evaporation technique was employed to prepare films of different combinations of polymers, plasticizer, and a modal drug sulindac to narrow down on a few polymer-plasticizer-sulindac combinations. The sulindac-polymer-plasticizer combination that was stable with good film forming properties was processed by hot melt mixing, a technique close to hot melt extrusion, to predict its behavior in a hot melt extrusion process. Hot melt mixing is not a substitute to hot melt extrusion but is an aid in predicting the formation of molecularly dispersed form of a given set of drug-polymer-plasticizer combination in a hot melt extrusion process. The formulations were characterized by advanced techniques like optical microscopy, differential scanning calorimetry, hot stage microscopy, dynamic vapor sorption, and X-ray diffraction. Subsequently, the best drug-polymer-plasticizer combination obtained by hot melt mixing was subjected to hot melt extrusion process to validate the usefulness of hot melt mixing as a predictive tool in hot melt extrusion process.

2020 ◽  
Vol 859 ◽  
pp. 247-251
Author(s):  
Kasitpong Thanawuth ◽  
Pornsak Sriamornsak

The main objective of this study was to prepare the drug-loaded filament by hot-melt extrusion technique. Indomethacin (IND) was used as a model drug and polyvinyl alcohol (PVA) was used to produce the filament. The IND-PVA filament had clear yellow color and rough surface. Drug loading in the filament that was determined from three segments of the filament was similar, indicating that IND was homogeneously distributed in the filament.This finding was confirmed by differential scanning calorimetry and powder X-ray diffraction. In addition, thermogravimetric analysis data suggested that the drug and polymer were not degraded at temperature used in extrusion process. The filament could be further developed as dosage form or applied as starting material for 3D-printed dosage forms.


Author(s):  
SOFI N. STIANI ◽  
TAOFIK RUSDIANA ◽  
ANAS SUBARNAS

Objective: Hot Melt Extrusion (HME) is one of the techniques for preparing a solid dispersion hydrophilic excipient known as a no solvents practical method to increase the solubility of drugs. Apigenin (APG) has properties that thermal stable with melting point 345-350 °C but very low solubility in the water around 1,35 µg/ml. The polymer is stable in the HME method are Soluplus and Kollidon VA 64. The study aims to optimize the kind of polymer in HME formulae to improve the solubility and dissolution rate of apigenin by solid dispersion using hot-melt extrusion. Methods: Apigenin 10–50% w/w and Kollidon®VA 64 or Soluplus® and combination of Kollidon®VA 64 and Soluplus® were mixed, and the resulting blends extruded using a twin-screw extruder (Teach-Line ZK25T). Characterization of apigenin extrudates conducted using scanning electron microscopy, thermogravimetric analysis, differential scanning calorimetry, Fourier transform infrared spectroscopy, powder X-ray diffractometry, and dissolution. Results: Solubility studies presented enhancement in apigenin of 10%/Soluplus®90%; 10% w/w apigenin/Kollidon®VA 64 (90%); and 33,3% w/w apigenin/Kollidon®VA 64 33,3% mix Soluplus® 33,3% increased more than 18,25; 16,18-and 8,52-fold in water, respectively. Furthermore dissolution studies showed enhancement in apigenin percent release of 10%/Soluplus®90%; 10% w/w apigenin/Kollidon®VA 64 90%; and 33,3% w/w apigenin/Kollidon®VA 64 33,3% mix Soluplus® 33,3% tablet apigenin HME up to 34,29%; 69,75% and 30,69%, respectively. Conclusion: The formulation of 10% w/w Apigenin and 90% Soluplus® using hot-melt extrusion able to increase water solubility approximately 18,25-fold than raw material apigenin.


2019 ◽  
Vol 01 (01) ◽  
pp. e11-e21
Author(s):  
Lijun Zhang ◽  
Hansen Luan ◽  
Weiyue Lu ◽  
Hao Wang

AbstractThe purpose of this study was to develop a solid dispersion (SD) by miniaturized hot-melt extrusion (HME) for an insoluble molecule ZL006 which showed potency of increasing leukocytes. A preliminary formulation screening was conducted using solvent evaporation method. The selected SD formulation was further optimized and scaled up using a miniaturized twin-screw extruder. Solid-state characterizations of the scale-up SD and its corresponding physical mixture (PM) were performed by X-ray powder diffraction (XRPD), modulated differential scanning calorimetry (mDSC), and Fourier's transform infrared spectroscopy (FTIR). XRPD and mDSC results indicated the formation of amorphous SD. FTIR spectrum indicated the possible hydrogen bond formation between the compound and the excipient. A discriminating non-sink condition micro-dissolution of SD showed the fast release of ZL006 which was approximately two-fold and three-fold of dissolution of PM and pure crystalline compound, respectively. The preliminary in vivo pharmacokinetics (PK) study in rats showed 71% oral bioavailability from the SD, while the bioavailability of ZL006 conventional suspension was less than 1%. Thus, an SD formulation for ZL006 with improved solubility and bioavailability was developed by miniaturized HME with minimal amount of compound at early preclinical stage, which could enable the preclinical evaluation.


Sign in / Sign up

Export Citation Format

Share Document