scholarly journals Synthesis and Characterization of Star-Shaped Block Copolymer sPCL-b-PEG-GA

2014 ◽  
Vol 2014 ◽  
pp. 1-6 ◽  
Author(s):  
Yi Zhang ◽  
Qian Zhao ◽  
Hewei Shao ◽  
Shiyu Zhang ◽  
Xiaoyan Han

Compared to linear polymers with the same molecular weight, star-shaped polymers have the superiority of drug loading and delivery. The glycyrrhetinic acid (GA) from licorice is remarkably characteristic of liver distribution and liver cells targetability. In this paper, four-armed star-shaped polycaprolactone was synthesized and amino polyethylene glycol was modified by glycyrrhetinic acid (NH2-PEG-GA). Then the condensation reaction between the two above polymers finally produced four-armed star-shaped poly(ethylene glycol)-b-poly(ε-caprolactone) block copolymer (sPCL-b-PEG-GA). The structures of the intermediates and product were characterized by1H NMR. The results indicated that the structure and molecular weight of sPCL-b-PEG-GA can be controlled by the varied ratios of pentaerythritol (PTOL) toε-caprolactone (ε-CL) in the presence of stannous octoate (Sn(Oct)2), and the amphiphilic copolymer sPCL-b-PEG-GA consists of PTOL as core, PCL as inner hydrophobic segments, PEG as external hydrophilic segments, and terminal glycyrrhetic acid as targeting ligand. The work explored a new synthesis route of star poly(ethylene glycol)-b-poly(ε-caprolactone) copolymer with liver targetability. The star-shaped polymer is expected to be an efficient drug carrier.

Pharmaceutics ◽  
2018 ◽  
Vol 10 (4) ◽  
pp. 230 ◽  
Author(s):  
Xingzheng Liu ◽  
Rongrong Fan ◽  
Boting Lu ◽  
Yuan Le

Methoxy-poly(ethylene glycol)-poly(l-glutamic acid)-poly(l-phenylalanine) triblock polymers with different architecture were synthesized as drug carrier to obtain sustained and controlled release by tuning the composition. These triblock polymers were prepared by ring opening polymerization and poly(ethylene glycol) was used as an initiator. Polymerization was confirmed by 1H NMR, FT-IR and gel penetration chromatography. The polymers can self-assemble to form micelles in aqueous medium and their critical micelle concentrations values were examined. The micelles were spherical shape with size of 50–100 nm and especially can arranged in a regular manner. Sorafenib was selected as the model drug and the drug loading performance was dependent on the composition of the block copolymer. In vitro drug release indicated that the polymers can realize controlled and sustained drug release. Furthermore, in vitro cytotoxicity assay showed that the polymers were biocompatible and the drug-loaded micelles can increase toxicity towards tumor cells. Confocal fluorescence microscopy assays illustrated that the micelles can be uptaken quickly and release drug persistently to inhibit tumor cell growth.


Pharmaceutics ◽  
2020 ◽  
Vol 12 (1) ◽  
pp. 47
Author(s):  
Chao Lu ◽  
Ting Wen ◽  
Maochao Zheng ◽  
Daojun Liu ◽  
Guilan Quan ◽  
...  

With the development of modern medical technology, common diseases usually can be treated by traditional medicines and their formulation, while diseases with multiple etiologies still remain a great challenge in clinic. Nanoformulation was widely explored to address this problem. However, due to limited drug loading space of nanocarriers, co-delivery strategy usually fails to achieve sufficient loading of multiple drugs simultaneously. In this research, we explored the potential of poly(ethylene glycol) (PEG) crosslinked alternating copolymers MPLL-alt-PEG as both an anionic drug carrier and antimicrobial agent. The high cationic charge density of multi-armed poly(l-lysine) (MPLL) segments in MPLL-alt-PEG could endow the electrostatic encapsulation of anionic model drugs through the formation of polyion complex micelles with a MPLL/drug complex core and crosslinked PEG outer shell, enabling pH-sensitive drug release. Meanwhile, the MPLL-alt-PEG copolymer exhibits a broad spectrum of antimicrobial activities against various clinically relevant microorganisms with low hemolytic activity. Studies on antibacterial mechanism revealed that MPLL-alt-PEG attacked bacteria through the membrane disruption mechanism which is similar to that of typical antimicrobial peptides. Taken together, the present study shed light on the possibility of endowing a polymeric carrier with therapeutic effect and thus offered a promising strategy for achieving a comprehensive treatment of bacterial infection-involved multifactorial diseases.


1990 ◽  
Vol 11 (1-3) ◽  
pp. 269-278 ◽  
Author(s):  
Yokoyama Masayuki ◽  
Miyauchi Mizue ◽  
Yamada Noriko ◽  
Okano Teruo ◽  
Sakurai Yasuhisa ◽  
...  

Molecules ◽  
2020 ◽  
Vol 26 (1) ◽  
pp. 111
Author(s):  
Gordana Stanojević ◽  
Djordje Medarević ◽  
Ivana Adamov ◽  
Nikola Pešić ◽  
Jovana Kovačević ◽  
...  

Various three-dimensional printing (3DP) technologies have been investigated so far in relation to their potential to produce customizable medicines and medical devices. The aim of this study was to examine the possibility of tailoring drug release rates from immediate to prolonged release by varying the tablet thickness and the drug loading, as well as to develop artificial neural network (ANN) predictive models for atomoxetine (ATH) release rate from DLP 3D-printed tablets. Photoreactive mixtures were comprised of poly(ethylene glycol) diacrylate (PEGDA) and poly(ethylene glycol) 400 in a constant ratio of 3:1, water, photoinitiator and ATH as a model drug whose content was varied from 5% to 20% (w/w). Designed 3D models of cylindrical shape tablets were of constant diameter, but different thickness. A series of tablets with doses ranging from 2.06 mg to 37.48 mg, exhibiting immediate- and modified-release profiles were successfully fabricated, confirming the potential of this technology in manufacturing dosage forms on demand, with the possibility to adjust the dose and release behavior by varying drug loading and dimensions of tablets. DSC (differential scanning calorimetry), XRPD (X-ray powder diffraction) and microscopic analysis showed that ATH remained in a crystalline form in tablets, while FTIR spectroscopy confirmed that no interactions occurred between ATH and polymers.


2007 ◽  
Vol 208 (24) ◽  
pp. 2642-2653 ◽  
Author(s):  
Alena Braunová ◽  
Michal Pechar ◽  
Richard Laga ◽  
Karel Ulbrich

Sign in / Sign up

Export Citation Format

Share Document