scholarly journals Phylogenetic Signals from Nepomorpha (Insecta: Hemiptera: Heteroptera) Mouthparts: Stylets Bundle, Sense Organs, and Labial Segments

2014 ◽  
Vol 2014 ◽  
pp. 1-30 ◽  
Author(s):  
Jolanta Brożek

The present study is a cladistic analysis of morphological characters focusing on the file of the mandible, the apices of the maxillae, the rupturing device on the maxillae, the internal structures of the mouthparts, and the external morphology of the labial segments as well as the distribution of labial sensilla in true water bugs (Hemiptera: Heteroptera, infraorder Nepomorpha). The study is based on data referring to sixty-two species representing all nepomorphan families (Heteroptera), together with one outgroup species representing the infraorders Gerromorpha (Mesoveliidae). The morphological data matrix consists of forty-eight characters. The present hypothesis supports the monophyly of the Nepomorpha and the monophyly of all families. The new modification in the systematic classification has been proposed: ((Nepidae + Belostomatidae), (Diaprepocoridae + Corixidae + Micronectidae), (Ochteridae + Gelastocoridae), Aphelocheiridae, Potamocoridae, Naucoridae, Notonectidae, and (Pleidae + Helotrephidae)).

2012 ◽  
Vol 10 (1) ◽  
pp. 19-44 ◽  
Author(s):  
Alfy Morales-Cazan ◽  
James S. Albert

The systematics and taxonomy of poeciliid fishes (guppies and allies) remain poorly understood despite the relative importance of these species as model systems in the biological sciences. This study focuses on testing the monophyly of the nominal poeciliine tribe Heterandriini and the genus Heterandria, through examination of the morphological characters on which the current classification is based. These characters include aspects of body shape (morphometrics), scale and fin-ray counts (meristics), pigmentation, the cephalic laterosensory system, and osteological features of the neurocranium, oral jaws and suspensorium, branchial basket, pectoral girdle, and the gonopodium and its supports. A Maximum Parsimony analysis was conducted of 150 characters coded for 56 poeciliid and outgroup species, including 22 of 45 heterandriin species (from the accounted in Parenti & Rauchenberger, 1989), or seven of nine heterandriin species (from the accounted in Lucinda & Reis, 2005). Multistate characters were analyzed as both unordered and ordered, and iterative a posteriori weighting was used to improve tree resolution. Tree topologies obtained from these analyses support the monophyly of the Middle American species of "Heterandria," which based on available phylogenetic information, are herein reassigned to the genus Pseudoxiphophorus. None of the characters used in previous studies to characterize the nominal taxon Heterandriini are found to be unambiguously diagnostic. Some of these characters are shared with species in other poeciliid tribes, and others are reversed within the Heterandriini. These results support the hypothesis that Pseudoxiphophorus is monophyletic, and that this clade is not the closest relative of H. formosa (the type species) from southeastern North America. Available morphological data are not sufficient to assess the phylogenetic relationships of H. formosa with respect to other members of the Heterandriini. The results further suggest that most tribe-level taxa of the Poeciliinae are not monophyletic, and that further work remains to resolve the evolutionary relationships of this group.


2000 ◽  
Vol 78 (3) ◽  
pp. 351-360 ◽  
Author(s):  
Ana M Arambarri

The diagnostic characters of the genus Lotus L. are a claw with a thickened infolded margin, diadelphous stamens, and a style hardened from the base. This genus contains about 100 species that are distributed throughout the world. To investigate the phylogeny of the Old World species of Lotus, subgenus Edentolotus, sections Krokeria, Xantholotus, and Erythrolotus, a cladistic analysis was performed using 31 morphological characters. To test the phylogenetic relationships among species of Lotus-Edentolotus and Dorycnium, Pedrosia, and Tetragonolobus, these taxa were included as part of the ingroup. The polarity of the characters was based on the outgroup comparison method, using Anthyllis as one outgroup and Tripodion as another. The analysis with Anthyllis as outgroup yielded eight equally parsimonious trees (with all characters equally weighted), each with 62 steps, a consistency index of 0.53, and a retention index of 0.75. All trees (including the strict consensus tree from the eight initial trees) showed that genus Lotus, subgenus Edentolotus, and sections Xantholotus and Erythrolotus are polyphyletic, with only section Krokeria appearing as monophyletic. On the other hand, the groups of species Lotus angustissimus, Lotus corniculatus, Lotus creticus, and Lotus peregrinus are monophyletic. Identical results were derived from the data matrix using Tripodion as the outgroup. Results are compared with previous cytogenetic and biochemical evidence.Key words: cladistic analysis, Fabaceae, Loteae, Lotus, Old World species, phylogeny.


2017 ◽  
Vol 284 (1848) ◽  
pp. 20162412 ◽  
Author(s):  
Alexander Blanke ◽  
Peter J. Watson ◽  
Richard Holbrey ◽  
Michael J. Fagan

Despite large-scale molecular attempts, the relationships of the basal winged insect lineages dragonflies, mayflies and neopterans, are still unresolved. Other data sources, such as morphology, suffer from unclear functional dependencies of the structures considered, which might mislead phylogenetic inference. Here, we assess this problem by combining for the first time biomechanics with phylogenetics using two advanced engineering techniques, multibody dynamics analysis and finite-element analysis, to objectively identify functional linkages in insect head structures which have been used traditionally to argue basal winged insect relationships. With a biomechanical model of unprecedented detail, we are able to investigate the mechanics of morphological characters under biologically realistic load, i.e. biting. We show that a range of head characters, mainly ridges, endoskeletal elements and joints, are indeed mechanically linked to each other. An analysis of character state correlation in a morphological data matrix focused on head characters shows highly significant correlation of these mechanically linked structures. Phylogenetic tree reconstruction under different data exclusion schemes based on the correlation analysis unambiguously supports a sistergroup relationship of dragonflies and mayflies. The combination of biomechanics and phylogenetics as it is proposed here could be a promising approach to assess functional dependencies in many organisms to increase our understanding of phenotypic evolution.


1995 ◽  
Vol 43 (6) ◽  
pp. 557 ◽  
Author(s):  
MS Springer ◽  
LJ Hollar ◽  
JAW Kirsch

Andersen's 1912 monograph on megachiropterans remains the definitive work on the systematics of this group. Andersen argued that the Macroglossinae, containing the eonycterine and notopterine sections, are a monophyletic sister-group to other fruitbats (i.e. Andersen's Rousettus, Cynopterus and Epomophorus sections). Two recent molecular studies (DNA hybridisation and restriction mapping of ribosomal cistrons), as well as an analysis of female reproductive characters, challenge the monophyly of the Macroglossinae and several of Andersen's other conclusions such as the phylogenetic position of Nyctimene. We performed a cladistic analysis on 36 morphological characters, including 33 that were gleaned from Andersen, to determine whether phylogenetic hypotheses based on modem phylogenetic methods are in agreement with Andersen's original conclusions and to compare morphological and molecular phylogenetic hypotheses. Minimum-length trees based on parsimony are largely consistent with Andersen and support (1) a monophyletic Macroglossinae, within which the eonycterine section is paraphyletic with respect to a monophyletic notopterine section, (2) a monophyletic Cynopterus section, excepting the exclusion of Myonycteris, (3) a monophyletic Epomophorus section, excepting the exclusion of Plerotes, and (4) a paraphyletic Rousettus section, with several of the Rousettus-like forms branching off near the base of the tree. Bootstrapping analyses on a reduced data-set that included taxa shared in common with the DNA hybridisation study did not provide strong support (greater than or equal to 95%) for any clades but did provide moderate support (greater than or equal to 70) for several clades, including a monophyletic Macroglossinae. These findings are in marked contrast to the DNA hybridisation phylogeny. A high index of between-data-set incongruence is further evidence for the clash between DNA hybridisation and morphology. A phylogenetic framework was constructed on the basis of morphological data and DNA hybridisation data using a criterion of moderate support and shows little resolution, whereas employing a criterion of strong support produced a framework resolving several additional nodes. One implication of this framework is that characteristic macroglossine features such as a long tongue with a thick carpet of filiform papillae have evolved independently on several occasions (or evolved once and were lost several times). Rates of character evolution for the morphological characters employed in our analysis were calculated using divergence times estimated from DNA hybridisation data. Rates have apparently been fastest in the interior branches, and slower along the external branches, which suggests an early adaptive radiation in the history of fruitbats.


2004 ◽  
Vol 35 (3) ◽  
pp. 307-316
Author(s):  
Mariano Donato

AbstractIn this study Parorphula is re-described based on characters from the external morphology and genitalia. This genus comprised two species: P. pallidinota and P. latipennis, that were described based mostly on characters from external morphology. The morphological analysis conducted in this study plus the support of results from a cladistic analysis showed that external morphological characters justify the creation of a new genus for P. latipennis. Therefore, the genus Neorphula is proposed and the new combination is established.


Zootaxa ◽  
2009 ◽  
Vol 2022 (1) ◽  
pp. 1-14 ◽  
Author(s):  
RAFAEL LEMAITRE ◽  
PATSY A. MCLAUGHLIN ◽  
ULF SORHANNUS

Phylogenetic relationships within the “symmetrical” hermit crab family Pylochelidae were analyzed for 41 of the 45 species and subspecies currently considered valid. In the analyses, 78 morphological characters comprised the data matrix and the outgroup consisted of Thalassina anomala, a member of the Thalassinidae, and Munida quadrispina, a member of the Galatheidae. A poorly resolved strict consensus tree was obtained from a heuristic parsimony analysis of unweighted and unordered characters, which showed the family Pylochelidae and the subfamilies Pylochelinae and Pomatochelinae to be monophyletic taxa – the latter two groups had the highest Bremer support values. Additionally, while the subgenus Pylocheles (Pylocheles) was strongly supported, the subgenera Xylocheles, and Bathycheles were not. More fully resolved trees were obtained when using implied weighting, which recognized the monotypic subfamilies Parapylochelinae, Cancellochelinae and Mixtopagurinae. The subfamily Trizochelinae was found to have four distinct clades and several ambiguously placed taxa.


Zootaxa ◽  
2019 ◽  
Vol 4691 (5) ◽  
pp. 461-490
Author(s):  
ALÍPIO R. BENEDETTI ◽  
RICARDO PINTO-DA-ROCHA

As part of an ongoing revision and cladistic analysis of the “K92 clade” (Gonyleptidae), the Brazilian genus Progonyleptoidellus Piza, 1940 is revised and two new species from São Paulo State are described: P. bocaina sp. nov. and P. picinguaba sp. nov. A cladistic analysis of the genus was performed using these two new species plus the three previously described species of the genus [P. fuscopictus (B. Soares, 1942); P. orguensis (Soares & Soares, 1954); and P. striatus (Roewer, 1913)], and 25 more additional gonyleptoid outgroup species, most being representatives of the K92 clade. The data matrix is composed of 109 characters: three from the ocularium, 24 from the dorsal scutum, six from the free tergites, nine from the pedipalp, 41 from the legs and 26 from male genitalia. The genus Progonyleptoidellus was recovered as monophyletic only with the exclusion of P. orguensis and was supported on the basis of only one exclusive synapomorphy: presence of dry-marks on sulci of dorsal scutum. Based on the cladistic analysis, P. orguensis was reallocated in Deltaspidium Roewer, 1927, herein considered a senior synonym of Adhynastes Roewer, 1930, and two new combinations are proposed: Deltaspidium orguense (Soares & Soares, 1954) and Deltaspidium tenue (Roewer, 1930). Diagnoses are given for Progonyleptoidellus, the previously described species, (P. fuscopictus and P. striatus) and the two new species.  


2006 ◽  
Vol 20 (1) ◽  
pp. 43 ◽  
Author(s):  
Antonio C. Marques ◽  
Alvaro L. Peña Cantero ◽  
Alvaro E. Migotto

A cladistic analysis of the genera of the family ‘Lafoeidae’ was performed in order to investigate suprageneric classifications and the boundaries of the family, as well as to organise the available morphological data and discuss the possible evolution of some morphological characters. Our results suggest that the former ‘Lafoeidae’ must be separated into two families: the Hebellidae and the Lafoeidae (including the subfamilies Lafoeinae and Zygophylacinae).


2020 ◽  
Vol 190 (2) ◽  
pp. 654-708
Author(s):  
Bruno V B Rodrigues ◽  
Cristina A Rheims

Abstract Prodidominae was recently re-established as a subfamily of Gnaphosidae, comprising 316 species placed in 33 genera. In this study, we conduct a cladistic analysis including 59 species of Prodidominae and 32 outgroup species. The matrix is composed of 291 morphological characters and the data are analysed under the parsimony criterion, using differing weighting regimes. Prodidominae is not recovered as monophyletic, because Anagrina did not arise within the subfamily. Cryptotoerithus, Molycria, Myandra, Nomindra, Wesmaldra and Wydundra arise to form a clade. Thus, we re-establish Molycriinae as a distinct subfamily in Gnaphosidae, sister to Prodidominae. We redefine the limits of Prodidominae to include the genera Austrodomus, Brasilomma, Caudalia, Chileomma, Chileuma, Chilongius, Eleleis, Indiani, Katumbea, Lygromma, Lygrommatoides, Moreno, Namundra, Neozimiris, Nopyllus, Paracymbiomma, Plutonodomus, Prodidomus, Purcelliana, Theuma, Theumella, Tivodrassus, Tricongius, Zimirina and Zimiris. Species of these genera share the presence of anterior lateral spinnerets with pyriform gland spigots associated with patches of long setae and the presence of a large protrusion between coxae IV with erect setae and unsclerotized margins. In addition, we propose three new synonymies: Oltacloea as a junior synonym of Tricongius, and Prodida as junior synonym of Prodidomus. Lygromma ybyguara is transferred to Tricongius.


2005 ◽  
Vol 272 (1572) ◽  
pp. 1577-1586 ◽  
Author(s):  
Niklas Wahlberg ◽  
Michael F Braby ◽  
Andrew V.Z Brower ◽  
Rienk de Jong ◽  
Ming-Min Lee ◽  
...  

Phylogenetic relationships among major clades of butterflies and skippers have long been controversial, with no general consensus even today. Such lack of resolution is a substantial impediment to using the otherwise well studied butterflies as a model group in biology. Here we report the results of a combined analysis of DNA sequences from three genes and a morphological data matrix for 57 taxa (3258 characters, 1290 parsimony informative) representing all major lineages from the three putative butterfly super-families (Hedyloidea, Hesperioidea and Papilionoidea), plus out-groups representing other ditrysian Lepidoptera families. Recently, the utility of morphological data as a source of phylogenetic evidence has been debated. We present the first well supported phylogenetic hypothesis for the butterflies and skippers based on a total-evidence analysis of both traditional morphological characters and new molecular characters from three gene regions ( COI , EF-1α and wingless ). All four data partitions show substantial hidden support for the deeper nodes, which emerges only in a combined analysis in which the addition of morphological data plays a crucial role. With the exception of Nymphalidae, the traditionally recognized families are found to be strongly supported monophyletic clades with the following relationships: (Hesperiidae+(Papilionidae+(Pieridae+(Nymphalidae+(Lycaenidae+Riodinidae))))). Nymphalidae is recovered as a monophyletic clade but this clade does not have strong support. Lycaenidae and Riodinidae are sister groups with strong support and we suggest that the latter be given family rank. The position of Pieridae as the sister taxon to nymphalids, lycaenids and riodinids is supported by morphology and the EF-1α data but conflicted by the COI and wingless data. Hedylidae are more likely to be related to butterflies and skippers than geometrid moths and appear to be the sister group to Papilionoidea+Hesperioidea.


Sign in / Sign up

Export Citation Format

Share Document