scholarly journals Magnetic-Field-Orientation Dependent Magnetoelectric Effect in FeBSiC/PZT/FeBSiC Composites

2014 ◽  
Vol 2014 ◽  
pp. 1-5 ◽  
Author(s):  
Jun-Xian Ye ◽  
Jia-Mian Hu ◽  
Zhan Shi ◽  
Zheng Li ◽  
Yang Shen ◽  
...  

We investigate the magnetic-field-orientation dependent magnetoelectric (ME) effect in the FeBSiC/Pb(Zr,Ti)O3(PZT)/FeBSiC laminates. It is shown that, by only using the bias-magnetic-field dependent ME response measured with the magnetic-field parallel to the surface plane of PZT slab, the magnetic-field-orientation dependent ME coefficient upon magnetic-fields of various amplitudes can be obtained via computer simulations. The simulation results match well the experimental measurements, demonstrating the applicability of the ME laminates-based sensors in detecting magnetic-fields with uncertain amplitudes and/or orientations in environment.

2014 ◽  
Vol 32 (10) ◽  
pp. 1247-1261 ◽  
Author(s):  
L. Turc ◽  
D. Fontaine ◽  
P. Savoini ◽  
E. K. J. Kilpua

Abstract. Magnetic clouds (MCs) are large-scale magnetic flux ropes ejected from the Sun into the interplanetary space. They play a central role in solar–terrestrial relations as they can efficiently drive magnetic activity in the near-Earth environment. Their impact on the Earth's magnetosphere is often attributed to the presence of southward magnetic fields inside the MC, as observed in the upstream solar wind. However, when they arrive in the vicinity of the Earth, MCs first encounter the bow shock, which is expected to modify their properties, including their magnetic field strength and direction. If these changes are significant, they can in turn affect the interaction of the MC with the magnetosphere. In this paper, we use data from the Cluster and Geotail spacecraft inside the magnetosheath and from the Advanced Composition Explorer (ACE) upstream of the Earth's environment to investigate the impact of the bow shock's crossing on the magnetic structure of MCs. Through four example MCs, we show that the evolution of the MC's structure from the solar wind to the magnetosheath differs largely from one event to another. The smooth rotation of the MC can either be preserved inside the magnetosheath, be modified, i.e. the magnetic field still rotates slowly but at different angles, or even disappear. The alteration of the magnetic field orientation across the bow shock can vary with time during the MC's passage and with the location inside the magnetosheath. We examine the conditions encountered at the bow shock from direct observations, when Cluster or Geotail cross it, or indirectly by applying a magnetosheath model. We obtain a good agreement between the observed and modelled magnetic field direction and shock configuration, which varies from quasi-perpendicular to quasi-parallel in our study. We find that the variations in the angle between the magnetic fields in the solar wind and in the magnetosheath are anti-correlated with the variations in the shock obliquity. When the shock is in a quasi-parallel regime, the magnetic field direction varies significantly from the solar wind to the magnetosheath. In such cases, the magnetic field reaching the magnetopause cannot be approximated by the upstream magnetic field. Therefore, it is important to take into account the conditions at the bow shock when estimating the impact of an MC with the Earth's environment because these conditions are crucial in determining the magnetosheath magnetic field, which then interacts with the magnetosphere.


1994 ◽  
Vol 21 (24) ◽  
pp. 2761-2764 ◽  
Author(s):  
F. V. Coroniti ◽  
E. W. Greenstadt ◽  
S. L. Moses ◽  
B. T. Tsurutani ◽  
E. J. Smith

1990 ◽  
Vol 140 ◽  
pp. 79-80
Author(s):  
M. F. Bietenholz ◽  
P. P. Kronberg

We present and describe recent radio observations of the Crab Nebula, which allow us to determine the magnetic field orientation and depolarization at unprecedented resolution. The observations were made in 1987-1988 using all four configurations of the VLA, at 1410,1515,4625, and 4885 MHz. The resulting maps were all convolved with a clean beam of 1.8″ × 2.0″, elongated in P.A. 80°, and the residuals added back in.


1999 ◽  
Vol 559 ◽  
Author(s):  
Derek M. Lincoln ◽  
Elliot P. Douglas

ABSTRACTWe have investigated the effect of various processing variables on the magnetic field orientation of a liquid crystalline epoxy. By using a modified fractional factorial design, we created an empirical model which can be used to predict the degree of orientation as a function of these variables. The model predicts the correct qualitative trends, namely that orientation increases with increasing magnetic field strength, increases with increasing time in the field, and decreases with increasing B-staging. The model also reveals some surprising effects of B-staging on the degree of orientation.


2020 ◽  
Author(s):  
Nada Al-Haddad ◽  
Noé Lugaz

<p>The structure of coronal mass ejections (CMEs) has been the center of numerous studies over the past few decades. Defining the magnetic field orientation locally and globally has proven to be a challenging problem, due to the limited nature of observations that we have, as well as our reliance on the current paradigm of highly-twisted flux ropes. Studies suggest that not all CMEs measured <em>in situ </em>fit within the simple twisted and well-organized flux rope topology. Additionally, many of the events that can be well fitted by existing static flux rope models, do not have as simple a structure as that assumed by the models. This is clear from remote observations and multi-spacecraft measurements. With the wealth of data that we have today, as well as the affluence of research and analysis performed over the last 40 years, it is dues time to present an alternative paradigm, that better represents those data. In this work, we discuss this new paradigm and the literature leading to it. </p>


2017 ◽  
Vol 603 ◽  
pp. A64 ◽  
Author(s):  
J. D. Soler ◽  
P. A. R. Ade ◽  
F. E. Angilè ◽  
P. Ashton ◽  
S. J. Benton ◽  
...  

We statistically evaluated the relative orientation between gas column density structures, inferred from Herschel submillimetre observations, and the magnetic field projected on the plane of sky, inferred from polarized thermal emission of Galactic dust observed by the Balloon-borne Large-Aperture Submillimetre Telescope for Polarimetry (BLASTPol) at 250, 350, and 500 μm, towards the Vela C molecular complex. First, we find very good agreement between the polarization orientations in the three wavelength-bands, suggesting that, at the considered common angular resolution of 3.́0 that corresponds to a physical scale of approximately 0.61 pc, the inferred magnetic field orientation is not significantly affected by temperature or dust grain alignment effects. Second, we find that the relative orientation between gas column density structures and the magnetic field changes progressively with increasing gas column density, from mostly parallel or having no preferred orientation at low column densities to mostly perpendicular at the highest column densities. This observation is in agreement with previous studies by the Planck collaboration towards more nearby molecular clouds. Finally, we find a correspondencebetween (a) the trends in relative orientation between the column density structures and the projected magnetic field; and (b) the shape of the column density probability distribution functions (PDFs). In the sub-regions of Vela C dominated by one clear filamentary structure, or “ridges”, where the high-column density tails of the PDFs are flatter, we find a sharp transition from preferentially parallel or having no preferred relative orientation at low column densities to preferentially perpendicular at highest column densities. In the sub-regions of Vela C dominated by several filamentary structures with multiple orientations, or “nests”, where the maximum values of the column density are smaller than in the ridge-like sub-regions and the high-column density tails of the PDFs are steeper, such a transition is also present, but it is clearly less sharp than in the ridge-like sub-regions. Both of these results suggest that the magnetic field is dynamically important for the formation of density structures in this region.


Sign in / Sign up

Export Citation Format

Share Document