scholarly journals Thermal Fluid-Structure Interaction in the Effects of Pin-Through-Hole Diameter during Wave Soldering

2014 ◽  
Vol 6 ◽  
pp. 275735 ◽  
Author(s):  
M. S. Abdul Aziz ◽  
M. Z. Abdullah ◽  
C. Y. Khor ◽  
Z. M. Fairuz ◽  
A. M. Iqbal ◽  
...  

An effective simulation approach is introduced in this paper to study the thermal fluid-structure interaction (thermal FSI) on the effect of pin-through-hole (PTH) diameter on the wave soldering zone. A 3D single PTH connector and a printed circuit board model were constructed to investigate the capillary flow behavior when passing through molten solder (63SnPb37). In the analysis, the fluid solver FLUENT was used to solve and track the molten solder advancement using the volume of fluid technique. The structural solver ABAQUS was used to examine the von Mises stress and displacement of the PTH connector in the wave soldering process. Both solvers were coupled by MpCCI software. The effects of six different diameter ratios (0.1 < d/ D < 0.97) were studied through a simulation modeling. The use of ratio d/ D = 0.2 yielded a balanced filling profile and low thermal stress. Results revealed that filling level, temperature, and displacement exhibited polynomial behavior to d/ D. Stress of pin varied quadratically with the d/ D. The predicted molten solder profile was validated by experimental results. The simulation results are expected to provide better visualization and understanding of the wave soldering process by considering the aspects of thermal FSI.

2014 ◽  
Vol 2014 ◽  
pp. 1-13 ◽  
Author(s):  
M. S. Abdul Aziz ◽  
M. Z. Abdullah ◽  
C. Y. Khor

An efficient simulation technique was proposed to examine the thermal-fluid structure interaction in the effects of solder temperature on pin through-hole during wave soldering. This study investigated the capillary flow behavior as well as the displacement, temperature distribution, and von Mises stress of a pin passed through a solder material. A single pin through-hole connector mounted on a printed circuit board (PCB) was simulated using a 3D model solved by FLUENT. The ABAQUS solver was employed to analyze the pin structure at solder temperatures of 456.15 K (183°C) <T< 643.15 K (370°C). Both solvers were coupled by the real time coupling software and mesh-based parallel code coupling interface during analysis. In addition, an experiment was conducted to measure the temperature difference (ΔT) between the top and the bottom of the pin. Analysis results showed that an increase in temperature increased the structural displacement and the von Mises stress. Filling time exhibited a quadratic relationship to the increment of temperature. The deformation of pin showed a linear correlation to the temperature. TheΔTobtained from the simulation and the experimental method were validated. This study elucidates and clearly illustrates wave soldering for engineers in the PCB assembly industry.


2015 ◽  
Vol 69 (3) ◽  
pp. 295-310
Author(s):  
M. S. Abdul Aziz ◽  
M. Z. Abdullah ◽  
C. Y. Khor ◽  
A. Jalar ◽  
F. Che Ani ◽  
...  

Author(s):  
Lucia Sargentini ◽  
Benjamin Cariteau ◽  
Morena Angelucci

This paper is related to fluid-structure interaction analysis of sodium cooled fast reactors core (Na-FBR). Sudden liquid evacuation between assemblies could lead to overall core movements (flowering and compaction) causing variations of core reactivity. The comprehension of the structure behavior during the evacuation could improve the knowledge about some SCRAMs for negative reactivity occurred in PHÉNIX reactor and could contribute on the study of the dynamic behavior of a FBR core. An experimental facility (PISE-2c) is designed composed by a Poly-methyl methacrylate hexagonal rods (2D-plan similitude with PHÉNIX assembly) with a very thin gap between assemblies. Another experimental device (PISE-1a) is designed and composed by a single hexagonal rod for testing the dynamic characteristics. Different experiments are envisaged: free vibrations and oscillations during water injection. A phenomenological analysis is reported showing the flow behavior in the gap and the structure response. Also computational simulations are presented in this paper. An efficient numerical method is used to solve Navier-Stokes equations coupled with structure dynamic equation. The numerical method is verified by the comparison of analytic models and experiments.


2015 ◽  
Vol 27 (1) ◽  
pp. 31-44 ◽  
Author(s):  
M.S. Abdul Aziz ◽  
M.Z. Abdullah ◽  
C.Y. Khor

Purpose – This paper aims to investigate the thermal fluid–structure interactions (FSIs) of printed circuit boards (PCBs) at different component configurations during the wave soldering process and experimental validation. Design/methodology/approach – The thermally induced displacement and stress on the PCB and its components are the foci of this study. Finite volume solver FLUENT and finite element solver ABAQUS, coupled with a mesh-based parallel code coupling interface, were utilized to perform the analysis. A sound card PCB (138 × 85 × 1.5 mm3), consisting of a transistor, diode, capacitor, connector and integrated circuit package, was built and meshed by using computational fluid dynamics pre-processing software. The volume of fluid technique with the second-order upwind scheme was applied to track the molten solder. C language was utilized to write the user-defined functions of the thermal profile. The structural solver analyzed the temperature distribution, displacement and stress of the PCB and its components. The predicted temperature was validated by the experimental results. Findings – Different PCB component configurations resulted in different temperature distributions, thermally induced stresses and displacements to the PCB and its components. Results show that PCB component configurations significantly influence the PCB and yield unfavorable deformation and stress. Practical implications – This study provides PCB designers with a profound understanding of the thermal FSI phenomenon of the process control during wave soldering in the microelectronics industry. Originality/value – This study provides useful guidelines and references by extending the understanding on the thermal FSI behavior of molten solder for PCBs. This study also explores the behaviors and influences of PCB components at different configurations during the wave soldering process.


2020 ◽  
pp. 1-39
Author(s):  
Kushagra Singh ◽  
Farshid Sadeghi ◽  
Thomas Russell ◽  
Steven J. Lorenz ◽  
Wyatt L. Peterson ◽  
...  

Abstract This paper presents a partitioned fluid-structure interaction (FSI) solver to model elastohydrodynamic lubrication (EHL) of line contacts. The FSI model was constructed using the multiphysics simulation software ANSYS wherein an iterative implicit coupling scheme is implemented to facilitate the interaction between fluid and solid components. The model employs a finite volume method (FVM) based computational fluid dynamics (CFD) solver to determine the lubricant flow behavior using the Navier-Stokes equations. Additionally, the finite element method (FEM) is utilized to model the structural response of the solid. Fluid cavitation, compressibility, non-Newtonian lubricant rheology, load balance algorithm and dynamic meshing were incorporated in the FSI model. The pressure and film thickness results obtained from the model are presented for a wide range of loads, speeds, slide to roll ratios (SRR), surface dent, material properties (elastic plastic), etc. The model presents a detailed understanding of EHL contacts by removing any assumptions relative to the Reynolds equation. It provides the (i) two-dimensional variation of pressure, velocity, viscosity etc. in the fluid, and (ii) stress, elastic/plastic strain in the solid, simultaneously. The FSI model is robust, easy to implement and computationally efficient. It provides an effective approach to solve sophisticated EHL problems. The FSI model was used to investigate the effects of surface dents, plasticity and material inclusions under heavily loaded lubricated line contacts as can be found in gears and rolling element bearings. The results from the model exhibit excellent corroboration with published results based on the Reynolds equation solvers.


2021 ◽  
Vol 2118 (1) ◽  
pp. 012003
Author(s):  
H E Calderón ◽  
L M Rada ◽  
J S De Plaza

Abstract This research focuses on improving the hydraulic behavior of a traditionally design bottom rack intake, from variations in roughness parameters, free height, and the inclusion of chamfers, establishing a contribution to the contrast between classical physics and the physics that takes over the partial resolution of the Navier-Stokes equations. To make possible the structure in OpenFOAM, it is necessary to use the geometric tool Salome-Meca, as well as a meshing tool (snappyHexMesh), and the InterFOAM solver in the processing stage. In the same way, through the turbulence model (K-E) local effects are evidenced in the Fluid-Structure interaction, as well as the identification of events and the development of the phenomenon of vorticity. The results show the improvement presented in some areas of the structure from the stabilization of the water flow through of the fluid-structure interaction change, the modification of the geometry and roughness, minimizing the presence of vertical vortices, cavitation, and surrounding areas. This allows us to conclude that traditional hydraulic do not consider the real physical flow behavior within the structure and neither the subsequent phenomena that develop, establishing as a starting point the need to rethink the design of the bottom rack intakes.


Author(s):  
Jamasp Azarnoosh ◽  
Fatemeh Hassanipour

Abstract Extracting milk during breastfeeding is not only caused by intra-oral vacuum pressure by the infant suckling but also is the periodic motion of the infant’s jaw, which is the focus of this study. A Fluid-structure interaction simulation provides a better understanding of the milk flow behavior in the human breast ductal system as the breast interacts with the infant’s oral cavity and jaws. Simulations were performed from the instance of latching and continued for two cycles of periodic tongue motion. The negative vacuum pressure profile was measured from the clinical data and applied in the simulation. The nipple dimensions were obtained using ultrasound images and used as boundary conditions in the simulation. The effect of vacuum pressure and the peripheral pressure on the milk flow behavior in breast ductal system were studied individually. It was observed that the deformation of the ductal system has a critical impact on milk flow behavior and the amount of expressed milk.


Sign in / Sign up

Export Citation Format

Share Document