scholarly journals Statistical Prediction of Summer Rainfall and Vegetation in the Ethiopian Highlands

2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
Mark R. Jury

Year-to-year fluctuations of Ethiopia climate are investigated to develop statistical predictions at one-season lead time. Satellite vegetation data from NASA and rainfall from ARC2 are the basis for analysis. The “target” seasons are May–July and August–October, while “predictors” are December–February and March–May, respectively. Global fields of surface temperature, sea level air pressure, and upper and lower level zonal winds are employed in point-to-field correlations. After step-wise multivariate regression, the leading predictors are: surface temperature across Europe (cold-favourable), 850 mb zonal winds over the tropical Atlantic (easterly-favourable), and surface temperature in the tropical Indian Ocean (cold-favourable). Predictive algorithms for early and late rainfall exhibit a consistentr2fit of ~0.50, while those for vegetation reach ~0.65 in late summer, indicating that fluctuations in food resources could be forewarned.

2020 ◽  
Author(s):  
Liang Shi ◽  
Ruiqiang Ding ◽  
Yu-heng Tseng

<p>The skills of most ENSO prediction models have declined significantly since 2000. This decline may be due to a weakening of the correlation between tropical predictors and ENSO. Moreover, the effects of extratropical ocean variability on ENSO have increased during this period. To improve ENSO predictability, we investigate the influence of the tropical-extratropical Atlantic and Pacific sea surface temperature(SST) on ENSO during the periods of pre-2000 and post-2000. We find that the influence of the northern tropical Atlantic(NTA) SST on ENSO has significantly increase since 2000. Meanwhile, there is a much earlier and stronger SST responses between NTA SST and ENSO over the central-eastern Pacific during June–July–August in the post-2000 period compared with the pre-2000 period. Furthermore, the extratropical Pacific SST predictors for ENSO still retain a ~10-month lead time after 2000. We use SST signals in the extratropical Atlantic and Pacific to predict ENSO using a statistical prediction model. These results reveal a significant improvement in ENSO prediction skills. These results indicate that the Atlantic and Pacific SSTAs can make substantial contributions to ENSO prediction, and can be further used to enhance ENSO predictability after 2000.</p>


2015 ◽  
Vol 28 (8) ◽  
pp. 3122-3132 ◽  
Author(s):  
Ming Luo ◽  
Yee Leung ◽  
Yu Zhou ◽  
Wei Zhang

Abstract Temporal scaling properties of the monthly sea surface temperature anomaly (SSTA) in global ocean basins are examined by the power spectrum and detrended fluctuation analysis methods. Analysis results show that scaling behaviors of the SSTA in most ocean basins (e.g., global average, South Pacific, eastern and western tropical Pacific, tropical Indian Ocean, and tropical Atlantic) are separated into two distinct regimes by a common crossover time scale of 52 months (i.e., 4.3 yr). It is suggested that this crossover is modulated by the El Niño/La Niña–Southern Oscillation (ENSO), indicating different scaling properties at different time scales. The SSTA time series is nonstationary and antipersistent at the small scale (i.e., crossover). It is, however, stationary and long range correlated at the large scale (i.e., crossover). For both time scales, scaling behaviors of SSTA are heterogeneously distributed over the ocean, and the fluctuation of SSTA intensifies with decreasing latitude. Stronger fluctuation appears over the tropical regions (e.g., central-eastern tropical Pacific, tropical Atlantic, tropical Indian Ocean, and South China Sea), which are directly or indirectly linked to ENSO. Weaker fluctuation and stronger persistence are found in mid- and high-latitude areas, coinciding with the “reemergence” areas.


2021 ◽  
Author(s):  
Fanny Chenillat ◽  
Julien Jouanno ◽  
Serena Illig ◽  
Founi Mesmin Awo ◽  
Gaël Alory ◽  
...  

<div><span>Surface chlorophyll-<em>a </em>concentration (CHL-<em>a</em>) remotely observed by satellite shows a marked seasonal and interannual variability in the Tropical Atlantic, with potential consequences on the marine trophic web. Seasonal and interannual CHL-<em>a </em>variability peaks in boreal summer and shows maxima in the equatorial Atlantic region at 10˚W, spreading from 0 to 30˚W. In this study, we analyze how the remotely-sensed surface CHL-<em>a </em>responds to the leading climate modes affecting the interannual equatorial Atlantic variability over the 1998-2018 period, namely the Atlantic Zonal Mode (AZM) and the North Tropical Atlantic Mode (NTA, also known as the Atlantic Meridional Mode). The AZM is characterized by anomalous warming (or cooling) along the eastern equatorial band. In contrast, the NTA is characterized by an interhemispheric pattern of the sea surface temperature (SST), with anomalous warm (cold) conditions in the north tropical Atlantic region and weak negative (positive) SST anomalies south of the equator. We show that both modes significantly drive the interannual Tropical Atlantic surface CHL-<em>a </em>variability, with different timings and contrasted modulation on the eastern and western portions of the cold tongue area. Our results also reveal that the NTA slightly dominates (40%) the summer tropical Atlantic interannual variability over the last two decades, most probably because of a positive phase of the Atlantic multidecadal oscillation. For each mode of variability, we analyze an event characterized by an extreme negative sea surface temperature (SST) anomaly in the Atlantic equatorial band. Both modes are associated with a positive CHL-<em>a </em>anomaly at the equator. In 2002, a negative phase of the NTA led to cold SST anomaly and high positive CHL-<em>a </em>in the western portion of the cold tongue, peaking in June-July and lasting until the end of the year. In contrast, in 2005, a negative phase of the AZM drove cool temperature and positive CHL-<em>a </em>in the eastern equatorial band, with a peak in May-June and almost no signature after August. Such contrasted year to year conditions can affect the marine ecosystem by changing temporal and spatial trophic niches for pelagic predators, thus inducing significant variations for ecosystem functioning and fisheries.</span></div>


Ocean Science ◽  
2018 ◽  
Vol 14 (4) ◽  
pp. 849-869 ◽  
Author(s):  
Gaëlle Herbert ◽  
Bernard Bourlès

Abstract. The impact of boreal spring intraseasonal wind bursts on sea surface temperature variability in the eastern tropical Atlantic Ocean in 2005 and 2006 is investigated using numerical simulation and observations. We especially focus on the coastal region east of 5° E and between the Equator and 7° S that has not been studied in detail so far. For both years, the southerly wind anomalies induced cooling episodes through (i) upwelling processes, (ii) vertical mixing due to the vertical shear of the current, and for some particular events (iii) a decrease in incoming surface shortwave radiation. The strength of the cooling episodes was modulated by subsurface conditions affected by the arrival of Kelvin waves from the west influencing the depth of the thermocline. Once impinging the eastern boundary, the Kelvin waves excited westward-propagating Rossby waves, which combined with the effect of enhanced westward surface currents contributed to the westward extension of the cold water. A particularly strong wind event occurred in mid-May 2005 and caused an anomalous strong cooling off Cape Lopez and in the whole eastern tropical Atlantic Ocean. From the analysis of oceanic and atmospheric conditions during this particular event, it appears that anomalously strong boreal spring wind strengthening associated with anomalously strong Hadley cell activity prematurely triggered the onset of coastal rainfall in the northern Gulf of Guinea, making it the earliest over the 1998–2008 period. No similar atmospheric conditions were observed in May over the 1998–2008 period. It is also found that the anomalous oceanic and atmospheric conditions associated with the event exerted a strong influence on rainfall off northeast Brazil. This study highlights the different processes through which the wind power from the South Atlantic is brought to the ocean in the Gulf of Guinea and emphasizes the need to further document and monitor the South Atlantic region.


Sign in / Sign up

Export Citation Format

Share Document