scholarly journals Performance Analysis ofγ-Radiation Test Monitor Using Monocrystalline n+pp++ Silicon Solar Cell: CsI(Tl) Scintillator

2014 ◽  
Vol 2014 ◽  
pp. 1-5 ◽  
Author(s):  
Ali Abd El-Salam Ibrahim ◽  
Mostafa Abd El-Fattah El-Aasser

The silicon solar cells are largely insensitive to gamma-radiation because the radiation passes through solar cells without imparting all of its energy. In order to enhance the sensitivity to radiation, the solar cells are coupled to CsI(Tl) scintillator. With the help of n+pp++ PESC monocrystalline silicon solar cells and CsI(Tl) scintillators, a gamma-radiation test monitor (TM) is developed. Due to safety concerns, a convenience relatively intense60Co gamma-source is used as a suitable substitute for spent fuel. Two designs made of two representative arrays of monocrystalline solar cells are suggested. The induced current and voltage generated by these solar cells are measured. The temperature dependence of the induced current and the angular characteristic of the TM, for both designs, are presented. In comparison to conventional gamma-ray sensors, the Si solar cells exhibited better performance than the conventional types. Design II is found to be more efficient than I and superior performance for all of the measured parameters is obtained.

2013 ◽  
Vol 803 ◽  
pp. 257-262
Author(s):  
Chun Yan Duan ◽  
Yuan Feng ◽  
Xiao Xia Zhao ◽  
Hui Shen

Au nanoparticles arrays for silicon solar cells were fabricated by self-assembly method to accommodate manufacturing process of traditional silicon solar cells. Surface morphologies of 10-30 nm thick films after annealing treatment at 600 °C and 700 °C were analyzed. It indicated that morphological features of Au nanoparticles arrays such as particle shapes, size distribution vary with thicknesses of Au films, annealing temperatures and surface morphologies of substrates.


2017 ◽  
Vol 14 (5) ◽  
pp. 363-367 ◽  
Author(s):  
Mohammad Bagher Askari ◽  
Mohammad Reza Bahrampour ◽  
Vahid Mirzaei ◽  
Amir Khosro Beheshti Marnani ◽  
Mirhabibi Mohsen

Purpose The aim of this paper is to apply a watery infrared filter for silicon solar cell efficiency enhancement in Kerman province of Iran as a talent region for solar energy production. Design/methodology/approach With this research, the water is applied as a filter for silicon solar cells in different volumes and thicknesses. Findings The obtained results showed that using various amounts of water could be a suitable choice for increasing the efficiency of silicon solar cells. Originality/value Other wavelength regions just cause the increase in the entropy and decrease in the efficiency. With this research, the water is applied as a filter for silicon solar cell in different volumes and thickness. The obtained results showed that using different thicknesses of water could be suitable choice for increasing the efficiency of silicon solar cell.


2020 ◽  
Vol 2 (6(75)) ◽  
pp. 56-61
Author(s):  
S.A. Livinskaya S.A.

In this work, a silicon solar cell HIT (heterojunction with intrinsic thin-layer) a-Si:H(n)/a-Si:H(i)/c-Si(p) was simulated using AFORS-HET software. The influence of layer thickness and temperature of the solar cell under study on its photovoltaic characteristics is discussed. When optimizing the above characteristics, its effectiveness reaches a value of 19.1%. The results obtained are the foundation for further scientific and technological research on the development of highly efficient silicon solar cells.


Author(s):  
Sadaf Faryal ◽  
Amjad Ali ◽  
Abdul Hameed Memon

— Utilization of solar photovoltaic is increasing dayby day to reduce dependence on the power grid. Decompositionof 1st and 3rd generation silicon solar cells not only depends uponthe plastic and other materials but also the hazardous elementmainly used as their character on the bases of which they arecategorized as 1st , 2nd and 3rd contemporaries solar cells. Theseingredient are mostly carcinogenic and some of them having lifespan of more than 100 years. After abjection of solar cells, theyremain in the soil for many years and cause serious problem toland environment and also responsible for causing carcinogenicdisease in human and other living beings. This paper exploresdecomposition rates of the chemical element mainly used in 1stand 3rd generation solar cells throughout the past years, possibleenvironmental and health effects by the hazardous elements usedin them typically silicon (atomic number 14) and focusing onpossible suggested solutions or alternatives.


1999 ◽  
Vol 1 (2) ◽  
pp. 117-129
Author(s):  
Gamal M. Eldallal ◽  
Mohamed Y. Feteha ◽  
Mostafa E. Mousaa

A realistic distributed equivalent circuit for the buried emitter silicon solar cell is presented taking into consideration the carriers paths through the planar and vertical junctions. In addition, a new theoretical model for the cell characteristics including the cell's mismatching, series resistance, different junctions (planar and vertical) and junctions geometry is considered in this work. The results are compared with the published data.


2017 ◽  
Vol 62 (3) ◽  
pp. 1733-1739 ◽  
Author(s):  
M. Lipiński ◽  
R.P. Socha ◽  
A. Kędra ◽  
K. Gawlińska ◽  
G. Kulesza-Matlak ◽  
...  

AbstractThe nanoparticles of CH3NH3PbBr3hybrid perovskites were synthesized. These perovskite nanoparticles we embedded in polymethyl methacrylate (PMMA) in order to obtain the composite, which we used as light converter for silicon solar cells. It was shown that the composite emit the light with the intensity maximum at about 527 nm when exited by a short wavelength (300÷450 nm) of light. The silicon solar cells were used to examine the effect of down-conversion (DC) process by perovskite nanoparticles embedded in PMMA. For experiments, two groups of monocrystalline silicon solar cells were used. The first one included the solar cells without surface texturization and antireflection coating. The second one included the commercial cells with surface texturization and antireflection coating. In every series of the cells one part of the cells were covered by composite (CH3NH3PbBr3in PMMA) layer and second part of cells by pure PMMA for comparison. It was shown that External Quantum Efficiency EQE of the photovoltaic cells covered by composite (CH3NH3PbBr3in PMMA) layer was improved in both group of the cells but unfortunately the Internal Quantum Efficiency was reduced. This reduction was caused by high absorption of the short wavelength light and reabsorption of the luminescence light. Therefore, the CH3NH3PbBr3perovskite nanoparticles embedded in PMMA matrix were unable to increase silicon solar cell efficiency in the tested systems.


2007 ◽  
Vol 989 ◽  
Author(s):  
Amornrat Limmanee ◽  
Michio Otsubo ◽  
Tsutomu Sugiura ◽  
Takehiko Sato ◽  
Shinsuke Miyajima ◽  
...  

AbstractWe deposited a-SiCN:H films by HWCVD using a gas mixture of hexamethyldisilazane, H2 and N2, and fabricated cast polycrystalline silicon solar cells with the a-SiCN:H passivation and anti-reflection layer. N2 addition led to the reduction of the refractive index of the a-SiCN:H films due to the increase in nitrogen concentration of the films. This improved performance of the antireflection layer. The advantage of adding N2 to the process was demonstrated by the improvement in short circuit current (JSC) and efficiency of cast polycrystalline silicon solar cells. At present, the efficiency of cast polycrystalline silicon solar cell using a-SiCN:H film as a passivation layer reached 14.2%.


Sign in / Sign up

Export Citation Format

Share Document