scholarly journals Event-BasedH∞Filter Design for Sensor Networks with Missing Measurements

2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
Jinliang Liu ◽  
Shumin Fei ◽  
Engang Tian

In order to save network resources and network bandwidth, this paper proposed an event triggered mechanism based on sampled-data information, which has some advantages over existing ones. Considering the missing sensor measurements and the network-induced delay in the transmission, we construct a new event-basedH∞filtering by taking the effect of sensor faults with different failure rates. By using the Lyapunov stability theory and the stochastic analysis theory, sufficient criteria are derived for the existence of a solution to the algorithm of the event-based filter design. Finally, an example is exploited to illustrate the effectiveness of the proposed method.

Author(s):  
TEJAL ARVIND SONAWALE ◽  
SHIKHA NEMA

Ad Hoc Networks face a lot of problems due to issues like mobility, power level, load of the network, bandwidth constraints, dynamic topology which lead to link breaks, node break down and increase in overhead. As nodes are changing their position consistently, routes are rapidly being disturbed, thereby generating route errors and new route discoveries. The need for mobility awareness is widely proclaimed. In our dissertation we present a scheme AOMDV-APLP that makes AOMDV aware of accessibility of neighbor nodes in the network. Nodes acquire the accessibility information of other nodes through routine routing operations and keep in their routing table. Based on this information route discovery is restricted to only “accessible” and “start” nodes. Further route with the strongest signal strength is selected from multiple routes using Link life value predicted by Link Breakage prediction technique. Simulation result shows that using accessibility and link life knowledge in route discovery process MAC overhead, routing overhead and average delay is reduced 3 times, and improve the Packet delivery ratio to a large extent than standard AOMDV which reflects effective use of network resources.


2017 ◽  
Vol 2017 ◽  
pp. 1-9 ◽  
Author(s):  
Yifu Feng ◽  
Zhi-Min Li ◽  
Xiao-Heng Chang

This paper investigates the problem of H∞ filtering for class discrete-time Lipschitz nonlinear singular systems with measurement quantization. Assume that the system measurement output is quantized by a static, memoryless, and logarithmic quantizer before it is transmitted to the filter, while the quantizer errors can be treated as sector-bound uncertainties. The attention of this paper is focused on the design of a nonlinear quantized H∞ filter to mitigate quantization effects and ensure that the filtering error system is admissible (asymptotically stable, regular, and causal), while having a unique solution with a prescribed H∞ noise attenuation level. By introducing some slack variables and using the Lyapunov stability theory, some sufficient conditions for the existence of the nonlinear quantized H∞ filter are expressed in terms of linear matrix inequalities (LMIs). Finally, a numerical example is presented to demonstrate the effectiveness of the proposed quantized filter design method.


Author(s):  
Yuheng Wei ◽  
Dongbing Tong ◽  
Qiaoyu Chen ◽  
Yuqing Sun ◽  
Wuneng Zhou

This study addresses the fault estimation (FE) issue for neutral-type systems with sensor faults and actuator faults through the intermediate observer. First, it is well-known that the observer matching condition (OMC) ought to be met for most traditional FE methods, which is actually difficult to satisfy for many systems. In order to overcome this limitation, a suitable variable is designed and the intermediate observer is proposed to estimate the actuator and sensor faults for neutral-type systems simultaneously. Second, based on linear matrix inequalities, sufficient conditions are derived, which guarantee the existence of the intermediate observer. An augmented descriptor system is constructed for the neutral-type systems. By the Lyapunov stability theory, states of error systems are ultimately bounded. Finally, two examples demonstrate the effectiveness and practicability of the designed strategy.


Game Theory ◽  
2017 ◽  
pp. 383-399
Author(s):  
Sungwook Kim

Computer network bandwidth can be viewed as a limited resource. The users on the network compete for that resource. Their competition can be simulated using game theory models. No centralized regulation of network usage is possible because of the diverse ownership of network resources. Therefore, the problem is of ensuring the fair sharing of network resources. If a centralized system could be developed which would govern the use of the shared resources, each user would get an assigned network usage time or bandwidth, thereby limiting each person's usage of network resources to his or her fair share. As of yet, however, such a system remains an impossibility, making the situation of sharing network resources a competitive game between the users of the network and decreasing everyone's utility. This chapter explores this competitive game.


Author(s):  
Sobana Sikkanan ◽  
Kasthuri M.

The internet is designed for processing and forwarding of any packet in a best effort manner. The packets carried by the internet may be malicious or not. Most of the time, internet architecture provides an unregulated path to victims. Denial-of-service (DoS) attack is the most common critical threat that causes devastating effects on the internet. The Botnet-based DoS attack aims to exhaust both the target resources and network bandwidth, thereby making the network resources unavailable for its valid users. The resources are utilized by either injecting a computer virus or flooding the network with useless traffic. This chapter provides a systematic analysis of the causes of DoS attacks, including motivations and history, analysis of different attacks, detection and protection techniques, various mitigation techniques, the limitations and challenges of DoS research areas. Finally, this chapter discusses some important research directions which will need more attention in the near future to guarantee the successful defense against DoS attacks.


Sign in / Sign up

Export Citation Format

Share Document