scholarly journals Nonlinear Analysis on Traffic Flow Based on Catastrophe and Chaos Theory

2014 ◽  
Vol 2014 ◽  
pp. 1-11 ◽  
Author(s):  
Jian Gu ◽  
Shuyan Chen

We applied catastrophe and chaos theory to analyze the traffic nonlinear characteristics of expressway condition. Catastrophe theory was generally used to explore the mathematical relationships among the traffic data collected from highway conditions, which could not be appropriate for the urban expressway conditions. Traffic flow data collected from the 3rd ring road expressway in Beijing was used to build flow-density model and speed-density Greenshields model. Then the density was discussed based on the traffic wave speed function with cusp catastrophe theory; in particular, density conditions on median lanes and shoulder lanes were deeply discussed. Meanwhile the chaotic characteristics were analyzed based on the traffic temporal sequence data collected from 29 detectors located at the 3rd ring road expressway, and C-C method was used to reconstruct the phase space and the largest Lyapunov exponents were estimated by Wolf method and the small data sets method. The results indicated that the traffic operation catastrophe density on the median lanes was a bit higher than that on the shoulder lanes; additionally chaotic characteristics obviously existed in the local corridor composed of 29 detectors in the 3rd ring road expressway traffic flow system.

2021 ◽  
Vol 3 (8) ◽  
Author(s):  
Ting Liu ◽  
Gabriel Lodewijks

Abstract Abstract On the basis of the influence of dry season on ship traffic flow, the gathering and dissipating process of ship traffic flow was researched with Greenshields linear flow—density relationship model, the intrinsic relationship between the ship traffic congestion state and traffic wave in the unclosed restricted channel segment was emphatically explored when the ship traffic flow in a tributary channel inflows, and the influence law of multiple traffic waves on the ship traffic flow characteristics in unclosed restricted segment is revealed. On this basis, the expressions of traffic wave speed and direction, dissipation time of queued ships and the number of ships affected were provided, and combined with Monte Carlo method, the ship traffic flow simulation model in the restricted channel segment was built. The simulation results show that in closed restricted channel segment the dissipation time of ships queued is mainly related to the ship traffic flow rate of segments A and C, and the total number of ships affected to the ship traffic flow rate of segment A. And in unclosed restricted channel segment, the dissipation time and the total number of ships affected are also determined by the meeting time of the traffic waves in addition to the ship traffic flow rate of segments. The research results can provide the theoretical support for further studying the ship traffic flow in unclosed restricted channel segment with multiple tributaries Article Highlights The inflow of tributaries' ship traffic flows has an obvious impact on the traffic conditions in the unenclosed restricted channel segment. The interaction and influence between multiple ship traffic waves and the mechanism of generating new traffic waves are explained. The expression of both dissipation time of queued ships and the total number of ships affected in the closed and unclosed restricted channel segment are given.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Eleanor F. Miller ◽  
Andrea Manica

Abstract Background Today an unprecedented amount of genetic sequence data is stored in publicly available repositories. For decades now, mitochondrial DNA (mtDNA) has been the workhorse of genetic studies, and as a result, there is a large volume of mtDNA data available in these repositories for a wide range of species. Indeed, whilst whole genome sequencing is an exciting prospect for the future, for most non-model organisms’ classical markers such as mtDNA remain widely used. By compiling existing data from multiple original studies, it is possible to build powerful new datasets capable of exploring many questions in ecology, evolution and conservation biology. One key question that these data can help inform is what happened in a species’ demographic past. However, compiling data in this manner is not trivial, there are many complexities associated with data extraction, data quality and data handling. Results Here we present the mtDNAcombine package, a collection of tools developed to manage some of the major decisions associated with handling multi-study sequence data with a particular focus on preparing sequence data for Bayesian skyline plot demographic reconstructions. Conclusions There is now more genetic information available than ever before and large meta-data sets offer great opportunities to explore new and exciting avenues of research. However, compiling multi-study datasets still remains a technically challenging prospect. The mtDNAcombine package provides a pipeline to streamline the process of downloading, curating, and analysing sequence data, guiding the process of compiling data sets from the online database GenBank.


Author(s):  
Jianping Ju ◽  
Hong Zheng ◽  
Xiaohang Xu ◽  
Zhongyuan Guo ◽  
Zhaohui Zheng ◽  
...  

AbstractAlthough convolutional neural networks have achieved success in the field of image classification, there are still challenges in the field of agricultural product quality sorting such as machine vision-based jujube defects detection. The performance of jujube defect detection mainly depends on the feature extraction and the classifier used. Due to the diversity of the jujube materials and the variability of the testing environment, the traditional method of manually extracting the features often fails to meet the requirements of practical application. In this paper, a jujube sorting model in small data sets based on convolutional neural network and transfer learning is proposed to meet the actual demand of jujube defects detection. Firstly, the original images collected from the actual jujube sorting production line were pre-processed, and the data were augmented to establish a data set of five categories of jujube defects. The original CNN model is then improved by embedding the SE module and using the triplet loss function and the center loss function to replace the softmax loss function. Finally, the depth pre-training model on the ImageNet image data set was used to conduct training on the jujube defects data set, so that the parameters of the pre-training model could fit the parameter distribution of the jujube defects image, and the parameter distribution was transferred to the jujube defects data set to complete the transfer of the model and realize the detection and classification of the jujube defects. The classification results are visualized by heatmap through the analysis of classification accuracy and confusion matrix compared with the comparison models. The experimental results show that the SE-ResNet50-CL model optimizes the fine-grained classification problem of jujube defect recognition, and the test accuracy reaches 94.15%. The model has good stability and high recognition accuracy in complex environments.


2020 ◽  
Vol 98 (Supplement_4) ◽  
pp. 8-9
Author(s):  
Zahra Karimi ◽  
Brian Sullivan ◽  
Mohsen Jafarikia

Abstract Previous studies have shown that the accuracy of Genomic Estimated Breeding Value (GEBV) as a predictor of future performance is higher than the traditional Estimated Breeding Value (EBV). The purpose of this study was to estimate the potential advantage of selection on GEBV for litter size (LS) compared to selection on EBV in the Canadian swine dam line breeds. The study included 236 Landrace and 210 Yorkshire gilts born in 2017 which had their first farrowing after 2017. GEBV and EBV for LS were calculated with data that was available at the end of 2017 (GEBV2017 and EBV2017, respectively). De-regressed EBV for LS in July 2019 (dEBV2019) was used as an adjusted phenotype. The average dEBV2019 for the top 40% of sows based on GEBV2017 was compared to the average dEBV2019 for the top 40% of sows based on EBV2017. The standard error of the estimated difference for each breed was estimated by comparing the average dEBV2019 for repeated random samples of two sets of 40% of the gilts. In comparison to the top 40% ranked based on EBV2017, ranking based on GEBV2017 resulted in an extra 0.45 (±0.29) and 0.37 (±0.25) piglets born per litter in Landrace and Yorkshire replacement gilts, respectively. The estimated Type I errors of the GEBV2017 gain over EBV2017 were 6% and 7% in Landrace and Yorkshire, respectively. Considering selection of both replacement boars and replacement gilts using GEBV instead of EBV can translate into increased annual genetic gain of 0.3 extra piglets per litter, which would more than double the rate of gain observed from typical EBV based selection. The permutation test for validation used in this study appears effective with relatively small data sets and could be applied to other traits, other species and other prediction methods.


Author(s):  
Jungeui Hong ◽  
Elizabeth A. Cudney ◽  
Genichi Taguchi ◽  
Rajesh Jugulum ◽  
Kioumars Paryani ◽  
...  

The Mahalanobis-Taguchi System is a diagnosis and predictive method for analyzing patterns in multivariate cases. The goal of this study is to compare the ability of the Mahalanobis-Taguchi System and a neural network to discriminate using small data sets. We examine the discriminant ability as a function of data set size using an application area where reliable data is publicly available. The study uses the Wisconsin Breast Cancer study with nine attributes and one class.


2021 ◽  
Vol 11 (5) ◽  
pp. 2057
Author(s):  
Abdallah Namoun ◽  
Ali Tufail ◽  
Nikolay Mehandjiev ◽  
Ahmed Alrehaili ◽  
Javad Akhlaghinia ◽  
...  

The use and coordination of multiple modes of travel efficiently, although beneficial, remains an overarching challenge for urban cities. This paper implements a distributed architecture of an eco-friendly transport guidance system by employing the agent-based paradigm. The paradigm uses software agents to model and represent the complex transport infrastructure of urban environments, including roads, buses, trolleybuses, metros, trams, bicycles, and walking. The system exploits live traffic data (e.g., traffic flow, density, and CO2 emissions) collected from multiple data sources (e.g., road sensors and SCOOT) to provide multimodal route recommendations for travelers through a dedicated application. Moreover, the proposed system empowers the transport management authorities to monitor the traffic flow and conditions of a city in real-time through a dedicated web visualization. We exhibit the advantages of using different types of agents to represent the versatile nature of transport networks and realize the concept of smart transportation. Commuters are supplied with multimodal routes that endeavor to reduce travel times and transport carbon footprint. A technical simulation was executed using various parameters to demonstrate the scalability of our multimodal traffic management architecture. Subsequently, two real user trials were carried out in Nottingham (United Kingdom) and Sofia (Bulgaria) to show the practicality and ease of use of our multimodal travel information system in providing eco-friendly route guidance. Our validation results demonstrate the effectiveness of personalized multimodal route guidance in inducing a positive travel behavior change and the ability of the agent-based route planning system to scale to satisfy the requirements of traffic infrastructure in diverse urban environments.


Author(s):  
Da Yang ◽  
Liling Zhu ◽  
Yun Pu

Although traffic flow has attracted a great amount of attention in past decades, few of the studies focused on heterogeneous traffic flow consisting of different types of drivers or vehicles. This paper attempts to investigate the model and stability analysis of the heterogeneous traffic flow, including drivers with different characteristics. The two critical characteristics of drivers, sensitivity and cautiousness, are taken into account, which produce four types of drivers: the sensitive and cautious driver (S-C), the sensitive and incautious driver (S-IC), the insensitive and cautious driver (IS-C), and the insensitive and incautious driver (IS-IC). The homogeneous optimal velocity car-following model is developed into a heterogeneous form to describe the heterogeneous traffic flow, including the four types of drivers. The stability criterion of the heterogeneous traffic flow is derived, which shows that the proportions of the four types of drivers and their stability functions only relating to model parameters are two critical factors to affect the stability. Numerical simulations are also conducted to verify the derived stability condition and further explore the influences of the driver characteristics on the heterogeneous traffic flow. The simulations reveal that the IS-IC drivers are always the most unstable drivers, the S-C drivers are always the most stable drivers, and the stability effects of the IS-C and the S-IC drivers depend on the stationary velocity. The simulations also indicate that a wider extent of the driver heterogeneity can attenuate the traffic wave.


Sign in / Sign up

Export Citation Format

Share Document