scholarly journals An Eco-Friendly Multimodal Route Guidance System for Urban Areas Using Multi-Agent Technology

2021 ◽  
Vol 11 (5) ◽  
pp. 2057
Author(s):  
Abdallah Namoun ◽  
Ali Tufail ◽  
Nikolay Mehandjiev ◽  
Ahmed Alrehaili ◽  
Javad Akhlaghinia ◽  
...  

The use and coordination of multiple modes of travel efficiently, although beneficial, remains an overarching challenge for urban cities. This paper implements a distributed architecture of an eco-friendly transport guidance system by employing the agent-based paradigm. The paradigm uses software agents to model and represent the complex transport infrastructure of urban environments, including roads, buses, trolleybuses, metros, trams, bicycles, and walking. The system exploits live traffic data (e.g., traffic flow, density, and CO2 emissions) collected from multiple data sources (e.g., road sensors and SCOOT) to provide multimodal route recommendations for travelers through a dedicated application. Moreover, the proposed system empowers the transport management authorities to monitor the traffic flow and conditions of a city in real-time through a dedicated web visualization. We exhibit the advantages of using different types of agents to represent the versatile nature of transport networks and realize the concept of smart transportation. Commuters are supplied with multimodal routes that endeavor to reduce travel times and transport carbon footprint. A technical simulation was executed using various parameters to demonstrate the scalability of our multimodal traffic management architecture. Subsequently, two real user trials were carried out in Nottingham (United Kingdom) and Sofia (Bulgaria) to show the practicality and ease of use of our multimodal travel information system in providing eco-friendly route guidance. Our validation results demonstrate the effectiveness of personalized multimodal route guidance in inducing a positive travel behavior change and the ability of the agent-based route planning system to scale to satisfy the requirements of traffic infrastructure in diverse urban environments.

Author(s):  
Liang Emlyn Yang ◽  
Peter Hoffmann ◽  
Jürgen Scheffran ◽  
Sven Rühe ◽  
Jana Fischereit ◽  
...  

The importance of predicting the exposure to environmental hazards is highlighted by issues like global climate change, public health problems caused by environment stresses, and property damages and depreciations. Several approaches have been used to assess potential exposure and achieve optimal results under various conditions, for example, for different scales, groups of people, or certain points in time. Micro-simulation tools are becoming increasingly important in human exposure assessment, where each person is simulated individually and continuously. This paper describes an agent-based model (ABM) framework that can dynamically simulate human exposure levels, along with their daily activities, in urban areas that are characterized by environmental stresses such as air pollution and heat stress. Within the framework, decision making processes can be included for each individual based on rule-based behavior to achieve goals under changing environmental conditions. The ideas described in this paper are implemented in a free and open source NetLogo platform. A simplified modeling scenario of the ABM framework in Hamburg, Germany, further demonstrates its utility in various urban environments and individual activity patterns, and portability to other models, programs and frameworks. The prototype model can potentially be extended to support environmental incidence management by exploring the daily routines of different groups of citizens and compare the effectiveness of different strategies. Further research is needed to fully develop an operational version of the model.


Author(s):  
Andreea Ion ◽  
Monica Patrascu

Smart structures are complex systems situated in even more complex and large scale urban environments. This chapter opens the field of agent based modelling and simulation (ABMS) to civil engineers. ABMS offers a wide range of tools for implementing simulation models of systems with high degrees of interconnectivity and a large number of component subsystems. The ease of use for specialized engineers and the capabilities of integration with existent technologies and infrastructures, make agent based models a very attractive way to incorporate the social system in the design process of buildings. Moreover, ABMS allows for the testing and validation of structure wide control and automation systems. This chapter presents past and current efforts of using agent based modelling for smart structures, as well as the main challenges brought by this new interdisciplinary research domain.


Author(s):  
Satoshi Kurihara ◽  
◽  
Ryo Ogawa ◽  
Kosuke Shinoda ◽  
Hirohiko Suwa ◽  
...  

Traffic congestion is a serious problem for people living in urban areas, causing social problems such as time loss, economical loss, and environmental pollution. Therefore, we propose a multi-agent-based traffic light control framework for intelligent transport systems. Achieving consistent traffic flow necessitates the real-time adaptive coordination of traffic lights; however, many conventional approaches are of the centralized control type and do not have this feature. Our multi-agent-based control framework combines both indirect and direct coordination. Reaction to dynamic traffic flow is attained by indirect coordination, whereas green-wave formation, which is a systematic traffic flow control strategy involving several traffic lights, is attained by direct coordination. We present the detailed mechanism of our framework and verify its effectiveness using simulation to carry out a comparative evaluation.


Urban Science ◽  
2018 ◽  
Vol 2 (2) ◽  
pp. 36 ◽  
Author(s):  
Liang Yang ◽  
Peter Hoffmann ◽  
Jürgen Scheffran ◽  
Sven Rühe ◽  
Jana Fischereit ◽  
...  

Several approaches have been used to assess potential human exposure to environmental stresses and achieve optimal results under various conditions, such as for example, for different scales, groups of people, or points in time. A thorough literature review in this paper identifies the research gap regarding modeling approaches for assessing human exposure to environment stressors, and it indicates that microsimulation tools are becoming increasingly important in human exposure assessments of urban environments, in which each person is simulated individually and continuously. The paper further describes an agent-based model (ABM) framework that can dynamically simulate human exposure levels, along with their daily activities, in urban areas that are characterized by environmental stresses such as air pollution and heat stress. Within the framework, decision-making processes can be included for each individual based on rule-based behavior in order to achieve goals under changing environmental conditions. The ideas described in this paper are implemented in a free and open source NetLogo platform. A basic modeling scenario of the ABM framework in Hamburg, Germany, demonstrates its utility in various urban environments and individual activity patterns, as well as its portability to other models, programs, and frameworks. The prototype model can potentially be extended to support environmental incidence management through exploring the daily routines of different groups of citizens, and comparing the effectiveness of different strategies. Further research is needed to fully develop an operational version of the model.


Author(s):  
Meng-Qin Cheng ◽  
Lele Zhang ◽  
Xue-Dong Hu ◽  
Mao-Bin Hu

Enhancing traffic flow plays an important role in the traffic management of urban arterial networks. The policy of prohibiting left-turn (PLT) at selected highly demanded intersections has been adopted as an attempt to increase the efficiency at these intersections. In this paper, we study the impact of PLT by mathematical analysis and simulations based on the cellular automaton model. Using the flow-density relation, three system performance indexes are examined: the average trip completion rate, the average traffic flow, and the average velocity of vehicles. Different route guidance strategies, including the shortest path and the quickest path, are investigated. We show that when left turn is prohibited, vehicles are distributed more homogeneously in the road network, and the system performs better and reaches a higher capacity. We also derive a critical length of link, above which the benefit of PLT will decrease.


Author(s):  
Rajesh Kumar Gupta ◽  
L. N. Padhy ◽  
Sanjay Kumar Padhi

Traffic congestion on road networks is one of the most significant problems that is faced in almost all urban areas. Driving under traffic congestion compels frequent idling, acceleration, and braking, which increase energy consumption and wear and tear on vehicles. By efficiently maneuvering vehicles, traffic flow can be improved. An Adaptive Cruise Control (ACC) system in a car automatically detects its leading vehicle and adjusts the headway by using both the throttle and the brake. Conventional ACC systems are not suitable in congested traffic conditions due to their response delay.  For this purpose, development of smart technologies that contribute to improved traffic flow, throughput and safety is needed. In today’s traffic, to achieve the safe inter-vehicle distance, improve safety, avoid congestion and the limited human perception of traffic conditions and human reaction characteristics constrains should be analyzed. In addition, erroneous human driving conditions may generate shockwaves in addition which causes traffic flow instabilities. In this paper to achieve inter-vehicle distance and improved throughput, we consider Cooperative Adaptive Cruise Control (CACC) system. CACC is then implemented in Smart Driving System. For better Performance, wireless communication is used to exchange Information of individual vehicle. By introducing vehicle to vehicle (V2V) communication and vehicle to roadside infrastructure (V2R) communications, the vehicle gets information not only from its previous and following vehicle but also from the vehicles in front of the previous Vehicle and following vehicle. This enables a vehicle to follow its predecessor at a closer distance under tighter control.


2019 ◽  
pp. 24-29
Author(s):  
V V. Kafidov ◽  
V. N. Filippov ◽  
I. P. Filippova

The presented study addresses the problems of development of small and medium towns in Russia. Aim. The study aims to examine a town as a socio-economic environment where its residents exist and as the fundamental factor for the development of society.Tasks. The authors identify key problems in the development of small and medium Russian towns, which interferes with the historical appearance and has a negative impact on the living environment.Methods. Problems in the development of small and medium towns in Russia are examined using theoretical methods: systematic approach, statistical analysis, social and philosophical analysis.Results. The study identifies the main negative effects of the existing model of development of small and medium Russian towns, such as destruction of their historical and cultural appearance, distortion of the overall architectural motif, increased load on communications, and congestion of the transport infrastructure.Conclusions. At the current stage, efficient development of small and medium towns in Russia is impossible within the framework of the existing infill development. This chaotic process cannot be stopped without a new conceptual approach and changes in the legislative and normative framework of urban development. The only factor that determines the boundaries of the existing approach to urban development is the lack of physical space for new buildings in urban areas. The authors formulate proposals that would help to solve the problems of development of small and medium towns in Russia. 


Author(s):  
Philip James

The focus of this chapter is an examination of the diversity of living organisms found within urban environments, both inside and outside buildings. The discussion commences with prions and viruses before moving on to consider micro-organisms, plants, and animals. Prions and viruses cause disease in plants and animals, including humans. Micro-organisms are ubiquitous and are found in great numbers throughout urban environments. New technologies are providing new insights into their diversity. Plants may be found inside buildings as well as in gardens and other green spaces. The final sections of the chapter offer a discussion of the diversity of animals that live in urban areas for part or all of their life cycle. Examples of the diversity of life in urban environments are presented throughout, including native and non-native species, those that are benign and deadly, and the common and the rare.


Sign in / Sign up

Export Citation Format

Share Document