scholarly journals Computational and Simulation Analysis of Pull-Out Fiber Reinforced Concrete

2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
Xia Zhao ◽  
Xiong-Jun He ◽  
Sheng Yan ◽  
Nguyen Phan Anh

The computational and simulation analysis of pull-out fiber reinforced concrete was investigated. The finite element analysis was used to make this modeling and analysis on this reinforced system and three parts (concrete matrix, the placed fiber reinforcement polymers (FRP), and resin layer) were studied. A constant load was directly applied on the free end of placed FRP and the deformation, von Mises stress, displacement, and strain of these three analyzed parts were obtained. Meanwhile, the specimen system of bonding strength and strain was calculated by the method of ABAQUS. The results showed that, with the constant load, the von Mises stress, deformation, and strain appeared in these three parts, and the maximum values in both FRP and resin layer were shown at the free end side, which provides an accurate description of the rupture mode.

1990 ◽  
Vol 17 (4) ◽  
pp. 610-620 ◽  
Author(s):  
Nemkumar Banthia

With the objective of understanding the reinforcing mechanisms of fibers in steel fiber reinforced concrete, the bond between the fibers and the surrounding matrix is studied by conducting single fiber pull-out tests on fibers bonded in cementitious matrices. Various matrix compositions and fiber geometries have been investigated and the effects of various other factors on the pull-out behavior of the fibers have been quantified through pull-out load–extension plots. Finally, the various modes of fiber–matrix load transfer have been discussed and the favorable and unfavorable conditions for such a transfer have been recognized. Key words: steel fiber reinforced concrete, toughness, fiber–matrix bond, deformed fiber, pull-out tests, load–extension plots.


Author(s):  
Payal Sachdeva ◽  
A.B. Danie Roy ◽  
Naveen Kwatra

Headed bars (HB) with different head shapes (Square, Circular, and Rectangular) and bar diameters (db: 16, 20, and 25 mm) embedded in steel fiber reinforced concrete have been subjected to pull-out test. The influence of head shapes, concrete compressive strength (M20 and M40), db, and steel fibers (0, 0.5, 1, and 1.5%) on the anchorage capacity of HB have been evaluated. Numerical model for improving the anchorage capacity of HB has also been proposed. Results have revealed that the anchorage capacity of HB increases with the increase in concrete compressive strength, db, and steel fibers, which have been validated by non-linear regression analysis using dummy variables. Two failure modes namely, steel and concrete-blowout have been observed and the prevailing mode of failure is steel failure. Based on load-deflection curves and derived descriptive equations, it is observed that the circular HB has displayed the highest peak load.


2021 ◽  
Author(s):  
jawad Ahmad ◽  
Fahad Aslam F.A

Abstract Self compacting concrete (SSC) is also brittle nature, resulting in abrupt failure without giving any warning, which is unacceptable for any construction materials. Therefore, SCC requires tensile reinforcement to increase tensile capacity and avoid the undesirable brittle failure of SCC. However, fiber improved tensile capacity more efficiently than compressive strength. Therefore, it important add pozzolanic material to fiber reinforced concrete to obtain high strength, durable and ductile concrete. This research is carried out to evaluate the qualities of concrete with addition of waste marble and coconut fiber in concrete. Marble waste used as binding (pozzolanic) materials in proportion of 5.0 to 30% by weight of cement in increment of 5.0% and concrete is reinforced with coconut fiber in proportion of 0.5% to 3.0% by weight of cement in increment of 0.5 %. Rheological properties were assessed through its passing ability and flowability by using Slump flow, Slump T50, L-Box, and V-funnel tests while mechanical performance were evaluated through compressive, split tensile, flexure and pull out tests. Tests results indicate that marble waste and coconut fiber decrease the passing ability and filling ability of SCC. Furthermore, tests results indicate that marble waste up to 20% and coconut fiber addition 2.0% by weight of cement have a tendency to enhance the mechanical strength of SCC. Finally, Statistical analysis (RSM) was used to optimize the combined substitution of marble waste and coconut fiber to obtain high strength concrete.


Author(s):  
Klaus Holschemacher ◽  
Ahsan Ali ◽  
Shahid Iqbal

In construction industry lightweight concrete and fiber reinforced concrete are being used for many years. The former is known for brittle nature, light in weight and low thermal conductivity properties. It also offers better workability when compared to the normal weight concrete for the same slump value. These properties are however affected by addition of discrete fibers. Among the affected properties is also the bond between steel and concrete surrounding it. The integrity of a reinforced concrete member is not ensured in the absence of adequate bond. Due to limited literature on the subject matter, an experimental program was carried out to understand the bond behavior in lightweight concrete after fiber inclusion. For the purpose modified pull-out specimens made of Lightweight Fiber Reinforced Concrete (LWFC) were tested. Hooked end steel fibers having length 35 mm and diameter 0.5 mm (l/d = 0.7) were incorporated in dosages of 0, 20, and 40 kg/m3. Besides pull-out specimens, testes were also carried out for fresh and hardened properties of LWFC. Tests results indicate higher pull-out loads for higher fiber contents. The average increase in ultimate bond strength was observed at 28% and 2% for 40 kg/m3 and 20 kg/m3 fiber contents respectively. The fresh concrete density, compressive strength of mixes reduced and air-content values increased with increase in fiber content.


Sign in / Sign up

Export Citation Format

Share Document