scholarly journals Performance of Sustainable Self-Compacting Fiber Reinforced Concrete with Substitution of Marble Waste (MW) and Coconut fibers (CFs)

Author(s):  
jawad Ahmad ◽  
Fahad Aslam F.A

Abstract Self compacting concrete (SSC) is also brittle nature, resulting in abrupt failure without giving any warning, which is unacceptable for any construction materials. Therefore, SCC requires tensile reinforcement to increase tensile capacity and avoid the undesirable brittle failure of SCC. However, fiber improved tensile capacity more efficiently than compressive strength. Therefore, it important add pozzolanic material to fiber reinforced concrete to obtain high strength, durable and ductile concrete. This research is carried out to evaluate the qualities of concrete with addition of waste marble and coconut fiber in concrete. Marble waste used as binding (pozzolanic) materials in proportion of 5.0 to 30% by weight of cement in increment of 5.0% and concrete is reinforced with coconut fiber in proportion of 0.5% to 3.0% by weight of cement in increment of 0.5 %. Rheological properties were assessed through its passing ability and flowability by using Slump flow, Slump T50, L-Box, and V-funnel tests while mechanical performance were evaluated through compressive, split tensile, flexure and pull out tests. Tests results indicate that marble waste and coconut fiber decrease the passing ability and filling ability of SCC. Furthermore, tests results indicate that marble waste up to 20% and coconut fiber addition 2.0% by weight of cement have a tendency to enhance the mechanical strength of SCC. Finally, Statistical analysis (RSM) was used to optimize the combined substitution of marble waste and coconut fiber to obtain high strength concrete.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Jawad Ahmad ◽  
Fahid Aslam ◽  
Rebeca Martinez-Garcia ◽  
Mohamed Hechmi El Ouni ◽  
Khalid Mohamed Khedher

AbstractSelf compacting concrete (SCC) is special type of concrete which is highly flowable and non-segregated and by its own mass, spreads into the formwork without any external vibrators, even in the presence of thick reinforcement. But SSC is also brittle nature like conventional concrete, which results in abrupt failure without giving any deformation (warning), which is undesirable for any structural member. Thus, self-compacting concrete (SCC) needs some of tensile reinforcement to enhance tensile strength and prevent the unsuitable abrupt failure. But fiber increased tensile strength of concrete more effectively than compressive strength. Hence, it is essential to add pozzolanic materials into fiber reinforced concrete to achieve high strength, durable and ductile concrete. This study is conducted to assess the performance of SCC with substitutions of marble waste (MW) and coconut fiber (CFs) into SCC. MW utilized as cementitious (pozzolanic) materials in percentage of 5.0 to 30% in increment of 5.0% by weight of binder and concrete is reinforced with CFs in proportion of 0.5 to 3.0% in increment of 0.5% by weight of binder. Rheological characteristics were measured through its filling and passing ability by using Slump flow, Slump T50, L-Box, and V-funnel tests while mechanical characteristics were measured through compressive strength, split tensile strength, flexure strength and bond strength (pull out) tests. Experimental investigation show that MW and CFs decrease the passing ability and filling ability of SCC. Additionally, Experimental investigation show that MW up to 20% and CFs addition 2.0% by weight of binder tend to increase the mechanical performance of SCC. Furthermore, statistical analysis (RSM) was used to optimize the combined dose of MW and CFs into SCC to obtain high strength self-compacting concrete.


Buildings ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 63
Author(s):  
Anna L. Mina ◽  
Michael F. Petrou ◽  
Konstantinos G. Trezos

The scope of this paper is to investigate the performance of ultra-high performance fiber reinforced concrete (UHPFRC) concrete slabs, under projectile impact. Mixture performance under impact loading was examined using bullets with 7.62 mm diameter and initial velocity 800 m/s. The UHPFRC, used in this study, consists of a combination of steel fibers of two lengths: 6 mm and 13 mm with the same diameter of 0.16 mm. Six composition mixtures were tested, four UHPFRC, one ultra-high performance concrete (UHPC), without steel fibers, and high strength concrete (HSC). Slabs with thicknesses of 15, 30, 50, and 70 mm were produced and subjected to real shotgun fire in the field. Penetration depth, material volume loss, and crater diameter were measured and analyzed. The test results show that the mixture with a combination of 3% 6 mm and 3% of 13 mm length of steel fibers exhibited the best resistance to projectile impact and only the slabs with 15 mm thickness had perforation. Empirical models that predict the depth of penetration were compared with the experimental results. This material can be used as an overlay to buildings or to construct small precast structures.


2008 ◽  
Vol 64 (3) ◽  
pp. 435-448
Author(s):  
Tetsuo KAWAGUCHI ◽  
Makoto KATAGIRI ◽  
Kazuyoshi SHIRAI ◽  
Junichiro NIWA

2012 ◽  
Vol 18 (31) ◽  
pp. 222-229
Author(s):  
Chunyakom Sivaleepunth ◽  
Toshimichi Ichinomiya ◽  
Shinichi Yamanobe ◽  
Tetsuya Kono ◽  
Naoki Sogabe ◽  
...  

Materials ◽  
2018 ◽  
Vol 11 (9) ◽  
pp. 1682 ◽  
Author(s):  
Jun Zhao ◽  
Jingchao Liang ◽  
Liusheng Chu ◽  
Fuqiang Shen

Many researchers have performed experimental and theoretical studies on the shear behavior of steel fiber reinforced concrete (SFRC) beams with conventional reinforcement; few studies involve the shear behavior of SFRC beams with high-strength reinforcement. In this paper, the shear test of eleven beams with high-strength reinforcement was carried out, including eight SFRC beams and three reinforced concrete (RC) beams. The load-deflection curve, concrete strain, stirrup strain, diagonal crack width, failure mode and shear bearing capacity of the beams were investigated. The test results show that steel fiber increases the stiffness, ultimate load and failure deformation of the beams, but the increase effect of steel fiber decreases with the increase of stirrup ratio. After the diagonal crack appears, steel fiber reduces the concrete strains of the diagonal section, stirrup strains and diagonal crack width. In addition, steel fiber reduces crack height and increases crack number. Finally, the experimental values of the shear capacities were compared with the values calculated by CECS38:2004 and ACI544.4R, and the equation of shear capacity in CECS38:2004 was modified to effectively predict the shear capacities of SFRC beams with high-strength reinforcement.


Sign in / Sign up

Export Citation Format

Share Document