scholarly journals Improvement of Moderately Loaded Transonic Axial Compressor Performance Using Low Porosity Bend Skewed Casing Treatment

2014 ◽  
Vol 2014 ◽  
pp. 1-14 ◽  
Author(s):  
Dilipkumar Bhanudasji Alone ◽  
S. Satish Kumar ◽  
Shobhavathy M. Thimmaiah ◽  
Janaki Rami Reddy Mudipalli ◽  
A. M. Pradeep ◽  
...  

This paper presents experimental results of a single stage transonic axial flow compressor coupled with low porosity bend skewed casing treatment. The casing treatment has a plenum chamber above the bend slots. The depth of the plenum chamber is varied to understand its impact on the performance of compressor stage. The performance of the compressor stage is evaluated for casing treatment and plenum chamber configurations at two axial locations of 20% and 40%. Experimental results reveal that the stall margin of the compressor stage increases with increase in the plenum chamber volume. Hot-wire measurements show significant reduction in the turbulence intensity with increase in the plenum chamber volume compared to that with the solid casing at the stall condition. At higher operating speeds of 80% and at 20% axial coverage, the stall margin of the compressor increases by 20% with half and full plenum depth. The improvement in the peak stage efficiency observed is 4.6% with half plenum configuration and 3.34% with the full plenum configuration. The maximum improvement in the stall margin of 29.16% is obtained at 50% operating speed with full plenum configurations at 40% axial coverage.

Author(s):  
Dilipkumar B. Alone ◽  
Subramani Satish Kumar ◽  
Shobhavathy Thimmaiah ◽  
Janaki Rami Reddy Mudipalli ◽  
A. M. Pradeep ◽  
...  

Bend skewed casing treatment was designed to improve the stable operating range of single stage transonic axial flow compressor and also to understand the effects of its plenum chamber volume on the performance. This paper presents the original experimental research work undertaken to study the effect of plenum chamber depth and thus its volume on the performance of single stage transonic axial flow compressor coupled with the bend skewed casing treatment. The bend skewed casing treatment with porosity of 33% was selected for the present experimental study. The bend skewed casing treatment has slot width equal to the maximum thickness of the rotor blade. The casing treatment geometry has an axial front segment and a 45° staggered rear segment following the blade tip stagger. Both the segments were skewed by 45° in the radial plane, in such a way that the flow emerging from the casing slots would do so with swirl contrary to the direction of rotor rotation. The plenum chamber which can also be called as stagnation zone exists above the skewed slots. The plenum chamber has an axial length equal to the axial length of the casing treatment slots. The maximum depth of the plenum chamber was 11 mm and which was equal to the depth of bend skewed casing slots. The depth of plenum chamber was varied from zero, half the slot depth, and equal to slot depth in order to get variable volume. The porosity and axial location of the casing treatment relative to the rotor tip chord were chosen from the earlier experimental programs on effect of bend skewed casing treatment porosities and axial coverages for the present compressor stage. Optimum performance of the transonic compressor stage was obtained at 20% and 40% axial coverages and for 33% porosity configurations. The axial coverages of 20% and 40% were chosen for the present study to understand the effects of plenum chamber volume on the performance of single stage transonic axial flow compressor. The performance of the compressor stage with solid casing and casing treatment with different plenum volume was obtained and compared at different operating speeds. The compressor performance was derived for the fixed casing treatment porosity of 33% and for three different configurations of plenum chamber volumes at two different axial coverages. Experimental investigations reveal that the plenum chamber volume does have an impact on the stable operating range of the compressor. The compressor stall margin improves with increase in the plenum chamber volume. Bend skewed casing treatment coupled with plenum chamber of depths equal to the slots depth results in maximum stall margin improvement of 37.62% as compared to 26.40% without plenum chamber over the solid casing at 40% axial coverage. For this combination 0.8% improvement in the peak stage efficiency above the solid casing was noticed at 60% design speed.


Author(s):  
Dilipkumar B. Alone ◽  
Subramani Satish Kumar ◽  
Shobhavathy Thimmaiah ◽  
Janaki Rami Reddy Mudipalli ◽  
A. M. Pradeep ◽  
...  

The performance of an aero-engines to a large extend depends on the performance behavior of axial flow compressors and is restricted by the compressor instabilities like rotating stall and surge. In the present study, attempts have been made to design and develop the bend skewed casing treatment geometries with lower porosities to improve the stable operating range of single stage axial flow compressor. Experimental investigations were undertaken to study the impact of axial position of one of the casing treatment geometry on the single stage transonic axial flow compressor. The transonic compressor used for the current experimental studies has a stage total to total pressure ratio of 1.35, corrected mass flow rate of 22 kg/s at an operating speed of 12930 rpm. The compressor stage steady and unsteady state response for 20%, 40%, 60% and 100% axial chord coverage relative to the rotor tip chord of the bend skewed casing treatment with a porosity of 33% was studied experimentally. The objective was to identify the optimum axial location; which will give maximum improvement in the stall margin with minimal loss of compressor stage efficiency. Through an experimental study it was observed that the axial location of bend skewed casing treatment plays a very crucial role in governing the performance of the transonic compressor. For all the investigated axial coverages, compressor stall margin increases but the optimum performance in terms of stall margin improvement and efficiency gains were observed at 20% and 40% of the rotor chord. This trend shows good agreement with existing published literature. An improvement of 31.7% in the stall margin with an increase in the stage efficiency was obtained at one of the axial coverage. Maximum improvement of 37% in the stall margin above the solid casing was noticed at 60% axial coverage. The stalling characteristics of the compressor stage also changes with the axial positions. In the presence of solid casing the nature of stall was abrupt and stalls cells travels at half the rotor speed. The blade element performance also studied at the rotor exit using pre-calibrated aerodynamic probe.


2016 ◽  
Vol 139 (2) ◽  
Author(s):  
Cyril Guinet ◽  
André Inzenhofer ◽  
Volker Gümmer

The design space of axial-flow compressors is restricted by stability issues. Different axial-type casing treatments (CTs) have shown their ability to enhance compressor stability and to influence efficiency. Casing treatments have proven to be effective, but there still is need for more detailed investigations and gain of understanding for the underlying flow mechanism. Casing treatments are known to have a multitude of effects on the near-casing 3D flow field. For transonic compressor rotors, these are more complex, as super- and subsonic flow regions alternate while interacting with the casing treatment. To derive design rules, it is important to quantify the influence of the casing treatment on the different tip flow phenomena. Designing a casing treatment in a way that it antagonizes only the deteriorating secondary flow effects can be seen as a method to enhance stability while increasing efficiency. The numerical studies are carried out on a tip-critical rotor of a 1.5-stage transonic axial compressor. The examined recirculating tip blowing casing treatment (TBCT) consists of a recirculating channel with an air off-take above the rotor and an injection nozzle in front of the rotor. The design and functioning of the casing treatment are influenced by various parameters. A variation of the geometry of the tip blowing, more specifically the nozzle aspect ratio, the axial position, or the tangential orientation of the injection port, was carried out to identify key levers. The tip blowing casing treatment is defined as a parameterized geometric model and is automatically meshed. A sensitivity analysis of the respective design parameters of the tip blowing is carried out on a single rotor row. Their impact on overall efficiency and their ability to improve stall margin are evaluated. The study is carried out using unsteady Reynolds-averaged Navier–Stokes (URANS) simulations.


Author(s):  
Jichao Li ◽  
Feng Lin ◽  
Sichen Wang ◽  
Juan Du ◽  
Chaoqun Nie ◽  
...  

Circumferential single-groove casing treatment becomes an interesting topic in recent few years, because it is a good tool to explore the interaction between the groove and the flow in blade tip region. The stall margin improvement (SMI) as a function of the axial groove location has been found for some compressors, such a trend cannot be predicted by steady high-fidelity CFD simulations. Recent efforts show that to catch such a trend, multi-passage, unsteady flow simulations are needed as the stalling mechanism itself involves cross-passage flows and unsteady dynamics. This indicates a need to validate unsteady numerical simulation results. In this paper, an extensive experimental study of a total of fifteen single casing grooves in a low-speed axial compressor rotor is presented, the groove location varies from 0.4% to 98.3% of axial tip chord are tested. The unsteady pressure data both at casing and at the blade wake with different groove locations are measured and processed, including the movement of trajectory of tip leakage flow, the evolution of unsteadiness of tip leakage flow (UTLF), the unsteady spectrum signature during the stall process, and the outlet unsteady flow characteristic along the span. These data provide a case study for validation of the unsteady CFD results, and may be helpful for further interpretation on the stalling mechanism affected by circumferential casing grooves.


Author(s):  
Mingmin Zhu ◽  
Xiaoqing Qiang ◽  
Jinfang Teng

Slot-type casing treatment generally has a great potential of enhancing the operating range for tip-critical compressor rotors, however, with remarkable efficiency drop. Part I of this two-part paper was committed to develop a slot configuration with desired stall margin improvement and minimized efficiency loss. Steady simulation was carried out in a 1.5 transonic axial compressor stage at part design rotating speed. At this rotating speed this compressor stage operated at a subsonic condition and showed a rather narrow operating range, which needed to be improved badly. Flow fields analysis at peak efficiency and near stall point showed that the development of tip leakage vortex and resulting blockage near casing resulted in numerical stall. Three kinds of skewed slots with same rotor exposure and casing porosity were designed according to the tip flow field and some empirical strategies. Among three configurations, arc-curved skewed slot showed minimum peak efficiency drop with considerable stall margin improvement. Then rotor exposure and casing porosity were varied based on the original arc-curved skewed slot, with a special interest in detecting their impact on the compressor stability and overall efficiency. Result showed that smaller rotor exposure and casing porosity leaded to less efficiency drop. But meanwhile, effectiveness of improving compressor stability was weakened. The relation between efficiency drop and stall margin improvement fell on a smooth continuous curve throughout all slots configurations, indicating that the detrimental effect of casing treatment on compressor was inevitable. Flow analysis was carried out for cases of smooth casing and three arc-curved configurations at smooth casing near stall condition. The strength of suction/injection, tip leakage flow behavior and removal of blockage near casing were detailed examined. Larger rotor tip exposure and slots number contributed to stronger injection flow. The loss generated within the mixing process of injection flow with main flow and leakage flow is the largest source of entropy increase. Further loss mechanisms were interpreted at eight axial cuts, which were taken through the blade row and slots to show the increase in entropy near tip region. Entropy distributions manifested that loss generations with smooth casing were primarily ascribed to low-momentum tip leakage flow/vortex and suction surface separation at leading edge. CU0 slot, the arc-curved slots with 50% rotor tip exposure, was capable of suppressing the suction surface separation loss. Meanwhile, accelerated tip leakage flow brought about additional loss near casing and pressure surface. Upstream high entropy flow would be absorbed into the rear portion of slots repeatedly, resulting in further loss.


2021 ◽  
pp. 1-34
Author(s):  
S Satish Kumar ◽  
Dilipkumar Bhanudasji Alone ◽  
Shobhavathy Thimmaiah ◽  
J Rami Reddy Mudipalli ◽  
Lakshya Kumar ◽  
...  

Abstract For successful implementation of casing treatment designs in axial compressors, apart from the stall margin improvement benefits, aeroelasticity also plays a major role. This manuscript addresses the not often discussed aeroelastic aspects of a new discrete type of passive Self-Recirculating Casing Treatment (RCT) designed for a transonic axial compressor stage. Experiments are carefully designed for synchronized measurement of the unsteady fluidic disturbances and vibrations during rotating stall for compressor with baseline solid casing and Self-RCT. The modal characteristics of the axial compressor rotor-disk assembly are studied experimentally and numerically. Experimentally it is observed that the rotating stall cells excite the blades in their fundamental mode in a compressor with baseline solid casing at the stall flow condition. In contrast, there is no excitation of the blades in the compressor with self-recirculating casing treatment at the same solid casing stall flow condition. Also, the self-recirculating casing treatment compared to the solid casing can significantly reduce the overall vibration levels of the blades that are excited at the stall flow condition. The casing treatment is able to alter the flow field near the tip region of the rotor blade, and hence influencing the forcing function of the rotating cantilever blades to have the aeroelastic benefit.


Author(s):  
Cyril Guinet ◽  
André Inzenhofer ◽  
Volker Gümmer

The design space of axial-flow compressors is restricted by stability issues. Different axial-type casing treatments have shown their ability to enhance compressor stability and to influence efficiency. Casing treatments have proven to be effective, but there still is need for more detailed investigations and gain of understanding for the underlying flow mechanism. Casing treatments are known to have a multitude of effects on the near-casing 3D flow field. For transonic compressor rotors these are more complex, as super- and subsonic flow regions alternate while interacting with the casing treatment. To derive design rules it is important to quantify the influence of the casing treatment on the different tip flow phenomena. Designing a casing treatment in a way that it antagonizes only the deteriorating secondary flow effects can be seen as a method to enhance stability while increasing efficiency. The numerical studies are carried out on a tip-critical rotor of a 1.5 stage transonic axial compressor. The examined recirculating tip blowing casing treatment, which consists of a recirculating channel with an air off-take above the rotor and an injection nozzle in front of the rotor. The design and functioning of the casing treatment is influenced by various parameters. A variation of the geometry of the tip blowing, more specifically the nozzle aspect ratio, the axial position or the tangential orientation of the injection port, was carried out to identify key levers. The tip blowing casing treatment is defined as a parameterized geometric model and is automatically meshed. A sensitivity analysis of the respective design parameters of the tip blowing is carried out on a single rotor row. Their impact on overall efficiency and their ability to improve stall margin is evaluated. The study is carried out using URANS simulations.


1984 ◽  
Vol 106 (3) ◽  
pp. 552-560 ◽  
Author(s):  
A. J. Wennerstrom

Design information and experimental results are presented for a transonic axial compressor stage passing 40 lbs/s-ft2 frontal area (195 Kg/s-m2) with a pressure ratio of 1.95 at 1500 ft/s (457 m/s) tip speed. The design incorporates several unusual features that helped it achieve a peak isentropic efficiency over 88 percent at design speed. The compressor was evaluated at three rotor tip clearances and an optimum was found. Vortex generators placed upstream on the casing proved relatively ineffective in influencing stall margin. Vortex generators installed on the rotor did improve stall margin and also increased efficiency at speeds of 90 percent and below.


2021 ◽  
pp. 1-66
Author(s):  
Dakun Sun ◽  
Jia Li ◽  
Xu Dong ◽  
Ruize Xu ◽  
Xiaofeng Sun

Abstract This paper concerns the stability improvement and noise reduction of an axial compressor caused by the foam metal casing treatment (FMCT). Three FMCTs with different PPI (pores per inch), 20, 35, and 50, are tested experimentally. Two installation locations of foam metal in casing are considered and investigated. At location 1, it is found that the FMCT improves the stall margin by 5.4%~8.7% and the attenuation of compressor noise is up to 5 dB. At location 2, the stall margin is extended by 22.2%~37.1% but increasing the noise mostly. Besides, foam metal at location 1 causes less efficiency loss than that in location 2. Based on the analysis in near-casing pressure distribution, spanwise performance comparison and stall inception, the mechanism of the FMCT for enhancing compressor stability is also discussed.


Sign in / Sign up

Export Citation Format

Share Document