metal casing
Recently Published Documents


TOTAL DOCUMENTS

64
(FIVE YEARS 17)

H-INDEX

9
(FIVE YEARS 2)

2021 ◽  
Vol 61 (6) ◽  
pp. 703-721
Author(s):  
Irina Karpiuk ◽  
Denis Danilenko ◽  
Vasyl Karpiuk ◽  
Anna Danilenko ◽  
Tatiana Lyashenko

Experimental data on the bearing capacity of damaged reinforced concrete beams with the dimensions of 2000×200×100 mm, reinforced with prestressed metal casings, are presented. Damaging in the form of through normal and crossing inclined cracks, as well as excessive vertical moving of the beam were obtained during previous tests for the effect of high-level transverse alternating loads.The authors of the article have developed a method and equipment for restoring and strengthening damaged reinforced concrete beams using a casing. Beams are manufactured and tested in accordance with the three-level design of an experiment.Previously damaged and reduced to the ultimate (pre-emergency) state, the beams were strengthened with the declared method and equipment, and then retested. New data on the bearing capacity of ordinary and damaged beams, as well as reinforced concrete elements strengthened with casings and tested for the action of transverse forces and bending moments were obtained. The research results are presented in the form of experimental-statistical dependences of the bearing capacity of the support areas, deformability and crack resistance of the investigated elements on the ratio of the most significant design factors and external factors. A comparative analysis of the influence of these factors on the main parameters of the bearing capacity of ordinary as well as previously damaged and then strengthened test beams is carried out.The possibility and appropriateness of using the proposed method of strengthening reinforced concrete beams damaged by through normal and cross-inclined force cracks in the conditions of an existing production has been experimentally proved.


Author(s):  
Dian Ding ◽  
Lanqing Yang ◽  
Yi-Chao Chen ◽  
Guangtao Xue

The convenience of laptops brings with it the risk of information leakage, and conventional security systems based on the password or the explicit biometric do little to alleviate this problem. Biometric identification based on anatomical features provides far stronger security; however, a lack of suitable sensors on laptops limits the applicability of this technology. In this paper, we developed a behavior-irrelevant user identification system applicable to laptops with a metal casing. The proposed scheme, referred to as LeakPrint, is based on leakage current, wherein the system uses an earphone to capture current leaking through the body and then transmits the corresponding signal to a server for identification. The user identification is achieved via denoising, dimension reduction, and feature extraction. Compared to other biometric identification methods, the proposed system is less dependent on external hardware and more robust to environmental noise. The experiments in real-world environments demonstrated that LeakPrint can verify user identity with high accuracy (93.6%), while providing effective defense against replay attacks (96.5%) and mimicry attacks (90.9%).


Photonics ◽  
2021 ◽  
Vol 8 (8) ◽  
pp. 334
Author(s):  
Ching-Bin Lin ◽  
Yu-Hsiang Lin ◽  
Wei-Yu Chen ◽  
Cheng-Yang Liu

The photonic nanojet is a non-resonance focusing phenomenon with high intensity and narrow spot that can serve as a powerful biosensor for in vivo detection of red blood cells, micro-organisms, and tumor cells in blood. In this study, we first demonstrated photonic nanojet modulation by utilizing a spider-silk-based metal–dielectric dome microlens. A cellar spider was employed in extracting the silk fiber, which possesses a liquid-collecting ability to form a dielectric dome microlens. The metal casing on the surface of the dielectric dome was coated by using a glancing angle deposition technique. Due to the nature of surface plasmon polaritons, the characteristics of photonic nanojets are strongly modulated by different metal casings. Numerical and experimental results showed that the intensity of the photonic nanojet was increased by a factor of three for the gold-coated dome microlens due to surface plasmon resonance. The spider-silk-based metal-dielectric dome microlens could be used to scan a biological target for large-area imaging with a conventional optical microscope.


2021 ◽  
Author(s):  
Jia Li ◽  
Dakun Sun ◽  
Ruize Xu ◽  
Xu Dong ◽  
Xiaofeng Sun

2021 ◽  
pp. 1-66
Author(s):  
Dakun Sun ◽  
Jia Li ◽  
Xu Dong ◽  
Ruize Xu ◽  
Xiaofeng Sun

Abstract This paper concerns the stability improvement and noise reduction of an axial compressor caused by the foam metal casing treatment (FMCT). Three FMCTs with different PPI (pores per inch), 20, 35, and 50, are tested experimentally. Two installation locations of foam metal in casing are considered and investigated. At location 1, it is found that the FMCT improves the stall margin by 5.4%~8.7% and the attenuation of compressor noise is up to 5 dB. At location 2, the stall margin is extended by 22.2%~37.1% but increasing the noise mostly. Besides, foam metal at location 1 causes less efficiency loss than that in location 2. Based on the analysis in near-casing pressure distribution, spanwise performance comparison and stall inception, the mechanism of the FMCT for enhancing compressor stability is also discussed.


Vestnik MGSU ◽  
2021 ◽  
pp. 506-512
Author(s):  
Valery A. Dorf ◽  
Boris K. Pergamenchik

Introduction. Dry shielding is a cylindrical structure made of serpentinite concrete in a metal casing with an inner diameter of 5.6 m, an outer diameter of 6.7 m, and a height of 5.3 m, which surrounds the VVER reactor vessel in the vicinity of the core. The purpose of serpentinite concrete, containing an increased amount of chemically bound water, is to soften the spectrum of the neutron flux outside the reactor, increasing the fraction of thermal neutrons in the spectrum, which is necessary for the operation of ionization chambers (IR) of the reactor control and protection system. Dry shielding also performs the functions of radiation and thermal protection, reducing the flux of radiation on ordinary concrete of biological protection. Before the installation of the dry shielding in the reactor shaft, heat treatment (drying) of concrete is carried out at temperatures up to 250 °С to remove unbound water in order to avoid radiolysis. Quality control of concreting and then heat treatment is carried out using a radioisotope device — a neutron moisture meter. These works are very lengthy and costly. Materials and methods. The design of the dry shielding casing was considered in order to perform additional perforation in order to avoid the formation of air pockets during concreting. The possibility of using modern plasticizing additives was considered in order to minimize the consumption of mixing water and, as a result, free water in the body of serpentinite concrete. Results. The possibility of exclusion of the stages of quality control of concreting and heat treatment in their traditional form is shown. Additional perforation of the metal casing, its internal diaphragms in problem areas, the use of a mixture of 20 cm slump or more allows you to completely eliminate the formation of internal voids. According to preliminary estimates, given the intensity of radiation in the NW for a modern reactor with a capacity of 1200 MW, the intensity of the release of hydrogen outside the shell due to radiolysis does not pose any danger. The concentration of hydrogen in the air surrounding the dry shielding is many orders less of magnitude than the dangerous 4 %. Conclusions. The cost of work on the construction of the SZ power unit of a nuclear power plant with a capacity of 1000–1200 MW can be reduced by 70–100 million rubles, the duration of work by 5 months.


Author(s):  
Takumi Nishime ◽  
Hiroshi Hashiguchi ◽  
Naobumi Michishita ◽  
Hisashi Morishita

Author(s):  
Jia Li ◽  
Dakun Sun ◽  
Reize Xu ◽  
Xu Dong ◽  
Xiaofeng Sun

Abstract Foam metal is a foam-like substance made out of metal and can be used in flow control, vibration damping and acoustic absorption mainly based on their special physical properties. A kind of foam metal casing treatment is proposed and tested in this study. The impact of the foam metal casing treatment on compressor stability and noise reduction are experimentally investigated. The foam metal selected in the experiments is constructed from ferronickel and its PPI (pores per inch) is 35. The foam metal casing treatment comprises annular support casing and foam metal ring. The effect of foam metal location on stability of the test compressor are investigated by placing shims in support casing. Both time-mean and high-response instrumentation are applied to capture the steady and unsteady compressor performances with the presence of the foam metal casing treatment. 20 microphones of G.R.A.S type are used to measure in-duct acoustic level of the compressor. It is found that the SMI (stall margin improvement) is 36.1% and the efficiency loss is 1.5% at location 7. When foam metal moves to rotor leading edge, the SMI as well as the efficiency loss are getting smaller. The optimal location in the experiments is location 4 where the SMI of compressor is 14.9% and the efficiency loss is 0.1%. The interaction of foam metal with flow in the blade tip region at these locations are investigated and presented in detail. The PSD (power spectrum density) analysis is carried out to show the unsteady signal development in stall inception. The noise attenuation varies in 0.18∼1.6 dB when foam metal is at different locations. Finally, the mechanism and application of the foam metal casing treatment are also discussed.


Sign in / Sign up

Export Citation Format

Share Document