Experimental Study of a High-Throughflow Transonic Axial Compressor Stage

1984 ◽  
Vol 106 (3) ◽  
pp. 552-560 ◽  
Author(s):  
A. J. Wennerstrom

Design information and experimental results are presented for a transonic axial compressor stage passing 40 lbs/s-ft2 frontal area (195 Kg/s-m2) with a pressure ratio of 1.95 at 1500 ft/s (457 m/s) tip speed. The design incorporates several unusual features that helped it achieve a peak isentropic efficiency over 88 percent at design speed. The compressor was evaluated at three rotor tip clearances and an optimum was found. Vortex generators placed upstream on the casing proved relatively ineffective in influencing stall margin. Vortex generators installed on the rotor did improve stall margin and also increased efficiency at speeds of 90 percent and below.

1987 ◽  
Vol 109 (3) ◽  
pp. 388-397 ◽  
Author(s):  
A. J. Wennerstrom

Between 1970 and 1974, ten variants of a supersonic axial compressor stage were designed and tested. These included two rotor configurations, three rotor tip clearances, addition of boundary-layer control consisting of vortex generators on both the outer casing and the rotor, and the introduction of slots in the stator vanes. Design performance objectives were a stage total pressure ratio of 3.0 with an isentropic efficiency of 0.82 at a tip speed of 1600 ft/s (488 m/s). The first configuration passed only 70 percent of design flow at design speed, achieving a stage pressure ratio of 2.25 at a peak stage isentropic efficiency of 0.61. The rotor was grossly separated. The tenth variant passed 91.4 percent of design flow at design speed, producing a stage pressure ratio of 3.03 with an isentropic efficiency of 0.75. The rotor achieved a pressure ratio of 3.59 at an efficiency of 0.87 under the same conditions. Major conclusions were that design tools available today would undoubtedly permit the original goals to be met or exceeded. However, the application for such a design is currently questionable because efficiency goals considered acceptable for most current programs have risen considerably from the level considered acceptable at the inception of this effort. Splitter vanes placed in the rotor permitted very high diffusion levels to be achieved without stalling. However, viscous effects causing three-dimensional flows violating the assumption of flow confined to concentric stream tubes were so strong that a geometry optimization does not appear practical without a three-dimensional, viscous analysis. Passive boundary-layer control in the form of vortex generators and slots does appear to offer some benefit under certain circumstances.


Author(s):  
Ali A. Merchant ◽  
Mark Drela ◽  
Jack L. Kerrebrock ◽  
John J. Adamczyk ◽  
Mark Celestina

The pressure ratio of axial compressor stages can be significantly increased by controlling the development of blade and endwall boundary layers in regions of adverse pressure gradient by means of boundary layer suction. This concept is validated and demonstrated through the design and analysis of a unique aspirated compressor stage which achieves a total pressure ratio of 3.5 at a tip speed of 1500 ft/s. The aspirated stage was designed using an axisymmetric through-flow code coupled with a quasi three-dimensional cascade plane code with inverse design capability. Validation of the completed design was carried out with three-dimensional Navier-Stokes calculations. Spanwise slots were used on the rotor and stator suction surfaces to bleed the boundary layer with a total suction requirement of 4% of the inlet mass flow. Additional bleed of 3% was also required on the hub and shroud near shock impingement locations. A three-dimensional viscous evaluation of the design showed good agreement with the quasi three-dimensional design intent, except in the endwall regions. The three-dimensional viscous analysis predicted a mass averaged total pressure ratio of 3.7 at an isentropic efficiency of 93% for the rotor, and a mass averaged total pressure ratio of 3.4 at an isentropic efficiency of 86% for the stage.


Author(s):  
S. Subbaramu ◽  
Quamber H. Nagpurwala ◽  
A. T. Sriram

This paper deals with the numerical investigations on the effect of trailing edge crenulation on the performance of a transonic axial compressor rotor. Crenulation is broadly considered as a series of small notches or slots at the edge of a thin object, like a plate. Incorporating such notches at the trailing edge of a compressor cascade has shown beneficial effect in terms of reduction in total pressure loss due to enhanced mixing in the wake region. These notches act as vortex generators to produce counter rotating vortices, which increase intermixing between the free stream flow and the low momentum wake fluid. Considering the positive effects of crenulation in a cascade, it was hypothesized that the same technique would work in a rotating compressor to enhance its performance and stall margin. However, the present CFD simulations on a transonic compressor rotor have given mixed results. Whereas the peak total pressure ratio in the presence of trailing edge crenulation reduced, the stall margin improved by 2.97% compared to the rotor with straight edge blades. The vortex generation at the crenulated trailing edge was not as strong as reported in case of linear compressor cascade, but it was able to influence the flow field in the rotor tip region so as to energize the low momentum end-wall flow in the aft part of the blade passage. This beneficial effect delayed flow separation and allowed the mass flow rate to be reduced to still lower levels resulting in improved stall margin. The reduction in pressure ratio with crenulation was surprising and might be due to increased mixing losses downstream of the blade.


Author(s):  
Teemu Turunen-Saaresti ◽  
Aki-Pekka Gro¨nman ◽  
Ahti Jaatinen

A centrifugal compressor is often equipped with a vaneless diffuser because the operation range of a vaneless diffuser is wider than the operation range of vaned diffuser, and the geometry of the vaneless diffuser is simple and inexpensive. The flow field after the centrifugal compressor rotor is highly complicated and the velocity is high. A moderate amount of this velocity should be recovered to the static pressure. It is important to study the flow field in the vaneless diffuser in order to achieve guidelines for design and an optimal performance. In this article, the experimental study of the pinch in the vaneless diffuser is conducted. Five different diffuser heights were used, b/b2 = 1, b/b2 = 0.903, b/b2 = 0.854, b/b2 = 0.806 and b/b2 = 0.903 (shroud). In three of the cases, the pinch was made to both walls of the diffuser, hub and shroud, and in one case, the pinch was made to the shroud wall. The total and the static pressure, the total temperature and the flow angle were measured at the diffuser inlet and outlet by using a cobra-probe, kiel-probes and flush-mounted pressure taps. In addition, the static pressure in the diffuser was measured at three different radius ratios. The overall performance, the mass flow, the pressure ratio and the isentropic efficiency of the compressor stage were also monitored. Detailed flow field measurements were carried out at the design rotational speed and at the three different mass flows (close to the surge, design and close to the choke). The isentropic efficiency and the pressure ratio of the compressor stage was increased with the pinched diffuser. The efficiency of the rotor and the diffuser was increased, whereas the efficiency of the volute/exit cone was decreased. The pinch made to the shroud wall was the most effective. The pinch made the flow angle more radial and increased the velocity at the shroud where the secondary flow (passage wake) from the rotor is present.


Energies ◽  
2021 ◽  
Vol 15 (1) ◽  
pp. 159
Author(s):  
Tien-Dung Vuong ◽  
Kwang-Yong Kim

The present work performed a comprehensive investigation to find the effects of a dual-bleeding port recirculation channel on the aerodynamic performance of a single-stage transonic axial compressor, NASA Stage 37, and optimized the channel’s configuration to enhance the operating stability of the compressor. The compressor’s performance was examined using three parameters: The stall margin, adiabatic efficiency, and pressure ratio. Steady-state three-dimensional Reynolds-averaged Navier–Stokes analyses were performed to find the flow field and aerodynamic performance. The results showed that the addition of a bleeding channel increased the recirculation channel’s stabilizing effect compared to the single-bleeding channel. Three design variables were selected for optimization through a parametric study, which was carried out to examine the influences of six geometric parameters on the channel’s effectiveness. Surrogate-based design optimization was performed using the particle swarm optimization algorithm coupled with a surrogate model based on the radial basis neural network. The optimal design was found to increase the stall margin by 51.36% compared to the case without the recirculation channel with only 0.55% and 0.28% reductions in the peak adiabatic efficiency and maximum pressure ratio, respectively.


Author(s):  
Song Huang ◽  
Chuangxin Zhou ◽  
Chengwu Yang ◽  
Shengfeng Zhao ◽  
Mingyang Wang ◽  
...  

Abstract As a degree of freedom in the three-dimensional blade design of axial compressors, the sweep technique significantly affects the aerodynamic performance of axial compressors. In this paper, the effects of backward sweep rotor configurations on the aerodynamic performance of a 1.5-stage highly loaded axial compressor at different rotational design speeds are studied by numerical simulation. The aim of this work is to improve understanding of the flow mechanism of backward sweep on the aerodynamic performance of a highly loaded axial compressor. A commercial CFD package is employed for flow simulations and analysis. The study found that at the design rotational speed, compared with baseline, backward sweep rotor configurations reduce the blade loading near the leading edge but slightly increases the blade loading near the trailing edge in the hub region. As the degree of backward sweep increases, the stall margin of the 1.5-stage axial compressor increase first and then decrease. Among different backward sweep rotor configurations, the 10% backward sweep rotor configuration has the highest stall margin, which is about 2.5% higher than that of baseline. This is due to the change of downstream stator incidence, which improves flow capacity near the hub region. At 80% rotational design speed, backward sweep rotor configurations improve stall margin and total pressure ratio of the compressor. It’s mainly due to the decreases of the rotor incidence near the middle span, which results in the decreases of separation on the suction surface. At 60% rotational design speed, detached shock disappears. Backward sweep rotor configurations deteriorate stall margin of the compressor, but increase total pressure ratio and adiabatic efficiency when the flow rate is lower than that at peak efficiency condition. Therefore, it’s necessary to consider the flow field structure of axial compressors at whole operating conditions in the design process and use the design freedom of sweep to improve the aerodynamic performance.


2014 ◽  
Vol 2014 ◽  
pp. 1-14 ◽  
Author(s):  
Dilipkumar Bhanudasji Alone ◽  
S. Satish Kumar ◽  
Shobhavathy M. Thimmaiah ◽  
Janaki Rami Reddy Mudipalli ◽  
A. M. Pradeep ◽  
...  

This paper presents experimental results of a single stage transonic axial flow compressor coupled with low porosity bend skewed casing treatment. The casing treatment has a plenum chamber above the bend slots. The depth of the plenum chamber is varied to understand its impact on the performance of compressor stage. The performance of the compressor stage is evaluated for casing treatment and plenum chamber configurations at two axial locations of 20% and 40%. Experimental results reveal that the stall margin of the compressor stage increases with increase in the plenum chamber volume. Hot-wire measurements show significant reduction in the turbulence intensity with increase in the plenum chamber volume compared to that with the solid casing at the stall condition. At higher operating speeds of 80% and at 20% axial coverage, the stall margin of the compressor increases by 20% with half and full plenum depth. The improvement in the peak stage efficiency observed is 4.6% with half plenum configuration and 3.34% with the full plenum configuration. The maximum improvement in the stall margin of 29.16% is obtained at 50% operating speed with full plenum configurations at 40% axial coverage.


2013 ◽  
Vol 284-287 ◽  
pp. 872-877 ◽  
Author(s):  
Dae Woong Kim ◽  
Jin Hyuk Kim ◽  
Kwang Yong Kim

This paper presents a parametric study on aerodynamic performance of a transonic axial compressor combined with a casing groove and tip injection using three-dimensional Reynolds-average Navier-Stokes equations. The front and rear lengths and height of the groove are selected as the geometric parameters to investigate their effects on the stall margin and peak adiabatic efficiency. These parameters are changed with constant injection. The validation of the numerical results is performed in comparison with experimental data for the total pressure ratio and adiabatic efficiency. As the results of the parametric study, the maximum stall margin and peak adiabatic efficiency are obtained in the axial compressor having 70% groove height of the reference groove. The stall margin and peak adiabatic efficiency in other cases are also improved in comparison with the axial compressors with the smooth casing and reference groove. The results show that both the stall margin and the peak adiabatic efficiency are considerably improved by the application of the casing groove combined with tip injection in an axial compressor.


Energies ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2346
Author(s):  
Tien-Dung Vuong ◽  
Kwang-Yong Kim

A casing treatment using inclined oblique slots (INOS) is proposed to improve the stability of the single-stage transonic axial compressor, NASA Stage 37, during operation. The slots are installed on the casing of the rotor blades. The aerodynamic performance was estimated using three-dimensional steady Reynolds-Averaged Navier-Stokes analysis. The results showed that the slots effectively increased the stall margin of the compressor with slight reductions in the pressure ratio and adiabatic efficiency. Three geometric parameters were tested in a parametric study. A single-objective optimization to maximize the stall margin was carried out using a Genetic Algorithm coupled with a surrogate model created by a radial basis neural network. The optimized design increased the stall margin by 37.1% compared to that of the smooth casing with little impacts on the efficiency and pressure ratio.


Sign in / Sign up

Export Citation Format

Share Document