scholarly journals Bipartite Consensus Control of Multiagent Systems on Coopetition Networks

2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
Jiangping Hu

Cooperation and competition are two typical interactional relationships in natural and engineering networked systems. Some complex behaviors can emerge through local interactions within the networked systems. This paper focuses on the coexistence of competition and cooperation (i.e., coopetition) at the network level and, simultaneously, the collective dynamics on such coopetition networks. The coopetition network is represented by a directed signed graph. The collective dynamics on the coopetition network is described by a multiagent system. We investigate two bipartite consensus strategies for multiagent systems such that all the agents converge to a final state characterized by identical modulus but opposite sign. Under a weak connectivity assumption that the coopetition network has a spanning tree, some sufficient conditions are derived for bipartite consensus of multiagent systems with the help of a structural balance theory. Finally, simulation results are provided to demonstrate the bipartite consensus formation.

2019 ◽  
Vol 2019 ◽  
pp. 1-12 ◽  
Author(s):  
Yilong Yang ◽  
Zhijian Ji ◽  
Lei Tian ◽  
Huizi Ma ◽  
Qingyuan Qi

The bipartite consensus of high-order edge dynamics is investigated for coopetition multiagent systems, in which the cooperative and competitive relationships among agents are characterized by positive weight and negative weight, respectively. By mapping the initial graph to a line graph, the distributed control protocol is proposed for the strongly connected, digon sign-symmetric structurally balanced line graph; and then we give sufficient conditions for the third-order multi-gent system to achieve both the bipartite consensus of edge dynamics and the final value of bipartite consensus. By transforming the coefficients of characteristic polynomial from complex domain to real number domain, the sufficient conditions for the bipartite consensus of high-order edge dynamics are also proposed, and the final values of the high-order edge dynamics on multiagent systems are obtained.


Complexity ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-14 ◽  
Author(s):  
Xiaoyu Wang ◽  
Kaien Liu ◽  
Zhijian Ji ◽  
Shitao Han

In this paper, the bipartite consensus problem of heterogeneous multiagent systems composed of first-order and second-order agents is considered by utilizing the event-triggered control scheme. Under structurally balanced directed topology, event-triggered bipartite consensus protocol is put forward, and event-triggering functions consisting of measurement error and threshold are designed. To exclude Zeno behavior, an exponential function is introduced in the threshold. The bipartite consensus problem is transformed into the corresponding stability problem by means of gauge transformation and model transformation. By virtue of Lyapunov method, sufficient conditions for systems without input delay are obtained to guarantee bipartite consensus. Furthermore, for the case with input delay, sufficient conditions which include an admissible upper bound of the delay are obtained to guarantee bipartite consensus. Finally, numerical simulations are provided to illustrate the effectiveness of the obtained theoretical results.


2018 ◽  
Vol 2018 ◽  
pp. 1-8 ◽  
Author(s):  
Cui-Qin Ma ◽  
Wei-Guo Sun

This paper studies bipartite consensus for first-order multiagent systems. To improve resource utilization, event-based protocols are considered for bipartite consensus. A new type of control gain is designed in the proposed protocols. By appropriate selection of control gains, the convergence rate of the closed-loop system can be adjusted. Firstly, for structural balance case, necessary and sufficient conditions are given on communication relations and consensus gains to achieve bipartite consensus. Secondly, for structural unbalance case, necessary and sufficient conditions are proposed to ensure the stabilizing of the system. It can be found that the system will not show Zeno behavior. Numerical simulations are used to demonstrate the theoretical results.


2013 ◽  
Vol 2013 ◽  
pp. 1-18 ◽  
Author(s):  
Yeong-Hwa Chang ◽  
Chun-Lin Chen ◽  
Wei-Shou Chan ◽  
Hung-Wei Lin ◽  
Chia-Wen Chang

This paper aims to investigate the formation control of leader-follower multiagent systems, where the problem of collision avoidance is considered. Based on the graph-theoretic concepts and locally distributed information, a neural fuzzy formation controller is designed with the capability of online learning. The learning rules of controller parameters can be derived from the gradient descent method. To avoid collisions between neighboring agents, a fuzzy separation controller is proposed such that the local minimum problem can be solved. In order to highlight the advantages of this fuzzy logic based collision-free formation control, both of the static and dynamic leaders are discussed for performance comparisons. Simulation results indicate that the proposed fuzzy formation and separation control can provide better formation responses compared to conventional consensus formation and potential-based collision-avoidance algorithms.


2018 ◽  
Vol 2018 ◽  
pp. 1-9
Author(s):  
Cui-Qin Ma ◽  
Yun-Bo Zhao ◽  
Wei-Guo Sun

Event-triggered bipartite consensus of single-integrator multi-agent systems is investigated in the presence of measurement noise. A time-varying gain function is proposed in the event-triggered bipartite consensus protocol to reduce the negative effects of the noise corrupted information processed by the agents. Using the state transition matrix, Ito^ formula, and the algebraic graph theory, necessary and sufficient conditions are given for the proposed protocol to yield mean square bipartite consensus. We find that the weakest communication requirement to ensure the mean square bipartite consensus under event-triggered protocol is that the signed digraph is structurally balanced and contains a spanning tree. Numerical examples validated the theoretical findings where the system shows no Zeno behavior.


2013 ◽  
Vol 2013 ◽  
pp. 1-14 ◽  
Author(s):  
Yuanhong Zhi ◽  
Zunling Ding ◽  
Yongkun Li

We present a model with feedback controls based on ecology theory, which effectively describes the competition and cooperation of enterprise cluster in real economic environments. Applying the comparison theorem of dynamic equations on time scales and constructing a suitable Lyapunov functional, sufficient conditions which guarantee the permanence and the existence of uniformly asymptotically stable almost periodic solution of the system are obtained.


Sign in / Sign up

Export Citation Format

Share Document