scholarly journals Numerical Study of Natural Convection within a Wavy Enclosure Using Meshfree Approach: Effect of Corner Heating

2014 ◽  
Vol 2014 ◽  
pp. 1-18 ◽  
Author(s):  
Sonam Singh ◽  
R. Bhargava

This paper presents a numerical study of natural convection within a wavy enclosure heated via corner heating. The considered enclosure is a square enclosure with left wavy side wall. The vertical wavy wall of the enclosure and both of the corner heaters are maintained at constant temperature,TcandTh, respectively, withTh>Tcwhile the remaining horizontal, bottom, top and side walls are insulated. A penalty element-free Galerkin approach with reduced gauss integration scheme for penalty terms is used to solve momentum and energy equations over the complex domain with wide range of parameters, namely, Rayleigh number (Ra), Prandtl number (Pr), and range of heaters in thex- andy-direction. Numerical results are represented in terms of isotherms, streamlines, and Nusselt number. It is observed that the rate of heat transfer depends to a great extent on the Rayleigh number, Prandtl number, length of the corner heaters and the shape of the heat transfer surface. The consistent performance of the adopted numerical procedure is verified by comparison of the results obtained through the present meshless technique with those existing in the literature.

Author(s):  
K. Venkatadri ◽  
S. Abdul Gaffar ◽  
Ramachandra Prasad V. ◽  
B. Md. Hidayathulla Khan ◽  
O. Anwar Beg

Natural convection within trapezoidal enclosures finds significant practical applications. The natural convection flows play a prominent role in the transport of energy in energyrelated applications, in case of proper design of enclosures to achieve higher heat transfer rates. In the present study, a two-dimensional cavity with adiabatic right side wall is studied. The left side vertical wall is maintained at the constant hot temperature and the top slat wall is maintained at cold temperature. The dimensionless governing partial differential equations for vorticity-stream function are solved using the finite difference method with incremental time steps. The parametric study involves a wide range of Rayleigh number, Ra, 103 ≤ Ra ≤ 105 and Prandtl number (Pr = 0.025, 0.71 and 10). The fluid flow within the enclosure is formed with different shapes for different Pr values. The flow rate is increased by enhancing the Rayleigh number (Ra = 104 ). The numerical results are validated with previous results. The governing parameters in the present article, namely Rayleigh number and Prandtl number on flow patterns, isotherms as well as local Nusselt number are reported. 


Author(s):  
E. Natarajan ◽  
Tanmay Basak ◽  
S. Roy

The present numerical study deals with natural convection flow in a trapezoidal cavity when the bottom wall is uniformly heated and the vertical wall(s) are linearly heated and cooled whereas the top wall is well insulated. Nonlinear coupled partial differential equations governing the flow have been solved by penalty finite element method with bi-quadratic rectangular elements. Parametric study for the wide range of Rayleigh number (Ra), 103 ≤ Ra ≤ 105 and Prandtl number (Pr), 0.07 ≤ Pr ≤ 100 shows consistent performance of the present numerical approach to obtain the solutions in terms of stream functions and the temperature profiles. For linearly heated side walls symmetry is observed while representing the flow patterns in terms of stream functions whereas secondary circulation is observed for the linearly heated left wall and cooled right wall. Local Nusselt number becomes negative at the side wall for linearly heated side walls and at the left wall for linearly heated left wall and cooled right wall indicating the reversal of heat flow. The effect of Prandtl number in the variation of average Nusselt numbers is more significant for Prandtl numbers in the range 0.07 to 0.7 than 10 to 100.


Author(s):  
Mikhail Sheremet ◽  
Teodor Grosan ◽  
Ioan Pop

Purpose The purpose of this paper is to study steady natural convection flow and heat transfer in a triangular cavity filled with a micropolar fluid. Design/methodology/approach It is assumed that the left inclined wall is heated, whereas the other walls are cooled and maintained at constant temperatures. All four walls of the cavity are assumed to be rigid and impermeable. The micropolar fluid is considered to satisfy the Boussinesq approximation. The governing equations and boundary conditions are solved using the finite difference method of the second order accuracy over a wide range of the Rayleigh number, Prandtl number, vortex viscosity parameter and two values of micro-gyration parameter, namely, strong concentration (n = 0) and week concentration (n = 0.5). Findings The results are presented in the form of streamlines, isotherms, vorticity contours and variations of average Nusselt number and fluid flow rate depending on the Rayleigh number, Prandtl number, vortex viscosity parameter and micro-gyration parameter. The flow field and temperature distribution in the cavity are affected by these parameters. The heat transfer rate into the cavity is decreasing upon the raise of the vortex viscosity parameter. Originality/value This work studies the effects of vortex viscosity parameter and micro-gyration parameter in a triangular cavity filled with a micropolar fluid on the fluid flow and heat transfer. This study might be useful to flows of biological fluids in thin vessels, polymeric suspensions, liquid crystals, slurries, colloidal suspensions, exotic lubricants; for the design of solar collectors, room ventilation systems and electronic cooling systems; and so on.


Author(s):  
Salaika Parvin ◽  
Nepal Chandra Roy ◽  
Litan Kumar Saha ◽  
Sadia Siddiqa

A numerical study is performed to investigate nanofluids' flow field and heat transfer characteristics between the domain bounded by a square and a wavy cylinder. The left and right walls of the cavity are at constant low temperature while its other adjacent walls are insulated. The convective phenomena take place due to the higher temperature of the inner corrugated surface. Super elliptic functions are used to transform the governing equations of the classical rectangular enclosure into a system of equations valid for concentric cylinders. The resulting equations are solved iteratively with the implicit finite difference method. Parametric results are presented in terms of streamlines, isotherms, local and average Nusselt numbers for a wide range of scaled parameters such as nanoparticles concentration, Rayleigh number, and aspect ratio. Several correlations have been deduced at the inner and outer surface of the cylinders for the average Nusselt number, which gives a good agreement when compared against the numerical results. The strength of the streamlines increases significantly due to an increase in the aspect ratio of the inner cylinder and the Rayleigh number. As the concentration of nanoparticles increases, the average Nusselt number at the internal and external cylinders becomes stronger. In addition, the average Nusselt number for the entire Rayleigh number range gets enhanced when plotted against the volume fraction of the nanofluid.


Author(s):  
Ajay Vallabh ◽  
P.S. Ghoshdastidar

Abstract This paper presents a steady-state heat transfer model for the natural convection of mixed Newtonian-Non-Newtonian (Alumina-Water) and pure Non-Newtonian (Alumina-0.5 wt% Carboxymethyl Cellulose (CMC)/Water) nanofluids in a square enclosure with adiabatic horizontal walls and isothermal vertical walls, the left wall being hot and the right wall cold. In the first case the nanofluid changes its Newtonian character to Non-Newtonian past 2.78% volume fraction of the nanoparticles. In the second case the base fluid itself is Non-Newtonian and the nanofluid behaves as a pure Non-Newtonian fluid. The power-law viscosity model has been adopted for the non-Newtonian nanofluids. A finite-difference based numerical study with the Stream function-Vorticity-Temperature formulation has been carried out. The homogeneous flow model has been used for modelling the nanofluids. The present results have been extensively validated with earlier works. In Case I the results indicate that Alumina-Water nanofluid shows 4% enhancement in heat transfer at 2.78% nanoparticle concentration. Following that there is a sharp decline in heat transfer with respect to that in base fluid for nanoparticle volume fractions equal to and greater than 3%. In Case II Alumina-CMC/Water nanofluid shows 17% deterioration in heat transfer with respect to that in base fluid at 1.5% nanoparticle concentration. An enhancement in heat transfer is observed for increase in hot wall temperature at a fixed volume fraction of nanoparticles, for both types of nanofluid.


1970 ◽  
Vol 39 (1) ◽  
pp. 1-7 ◽  
Author(s):  
Sumon Saha ◽  
Noman Hasan ◽  
Chowdhury Md Feroz

A numerical study has been carried out for laminar natural convection heat transfer within a two-dimensional modified square enclosure having a triangular roof. The vertical sidewalls are differentially heated considering a constant flux heat source strip is flush mounted with the left wall. The opposite wall is considered isothermal having a temperature of the surrounding fluid. The rest of the walls are adiabatic. Air is considered as the fluid inside the enclosure. The solution has been carried out on the basis of finite element analysis by a non-linear parametric solver to examine the heat transfer and fluid flow characteristics. Different heights of the triangular roof have been considered for the present analysis. Fluid flow fields and isotherm patterns and the average Nusselt number are presented for the Rayleigh numbers ranging from 103 to 106 in order to show the effects of these governing parameters. The average Nusselt number computed for the case of isoflux heating is also compared with the case of isothermal heating as available in the literature. The outcome of the present investigation shows that the convective phenomenon is greatly influenced by the inclined roof height. Keywords: Natural convection, triangular roof, Rayleigh number, isoflux heating. Doi:10.3329/jme.v39i1.1826 Journal of Mechanical Engineering, vol. ME39, No. 1, June 2008 1-7


1967 ◽  
Vol 30 (2) ◽  
pp. 337-355 ◽  
Author(s):  
Peter D. Richardson

An analysis is described for convection from a circular cylinder subjected to transverse oscillations relative to the fluid in which it is immersed. The analysis is based upon use of the acoustic streaming flow field. It is assumed that the frequency involved is sufficiently small that the acoustic wavelength in the fluid is much larger than the cylinder diameter, and that there is no externally imposed mean flow across or along the cylinder. Solutions are presented which are appropriate for a wide range of Prandtl number, and the cases of small and of large streaming Reynolds number are distinguished. The analysis compares favourably with experiments when the influence of natural convection is small.


2020 ◽  
Vol 330 ◽  
pp. 01004
Author(s):  
Abdennacer Belazizia ◽  
Smail Benissaad ◽  
Said Abboudi

Steady, laminar, natural convection flow in a square enclosure with partially active vertical wall is considered. The enclosure is filled with air and subjected to horizontal temperature gradient. Finite volume method is used to solve the dimensionless governing equations. The physical problem depends on three parameters: Rayleigh number (Ra =103-106), Prandtl number (Pr=0.71), and the aspect ratio of the enclosure (A=1). The active location takes two positions in the left wall: top (T) and middle (M). The main focus of the study is on examining the effect of Rayleigh number on fluid flow and heat transfer rate. The results including the streamlines, isotherm patterns, flow velocity and the average Nusselt number for different values of Ra. The obtained results show that the increase of Ra leads to enhance heat transfer rate. The fluid particles move with greater velocity for higher thermal Rayleigh number. Also by moving the active location from the top to the middle on the left vertical wall, convection and heat transfer rate are more important in case (M). Furthermore for high Rayleigh number (Ra=106), Convection mechanism in (T) case is principally in the top of the enclosure, whereas in the remaining case it covers the entire enclosure.


1981 ◽  
Vol 103 (2) ◽  
pp. 226-231 ◽  
Author(s):  
G. S. Shiralkar ◽  
C. L. Tien

Heat transfer by natural convection in a horizontal cavity with adiabatic horizontal walls and isothermal side walls is investigated numerically for high aspect ratios (width/height). Comparison is made with existing analytical and experimental results. Agreement is generally good at moderate and high Prandtl numbers to which most previous works have been restricted. Improvements of the existing correlation have been proposed in regions of discrepancy. Extension to the low Prandtl number case, including the range of liquid metals, has been made on the basis of an analytical model for high Rayleigh numbers as well as by numerical solution of the full equations. The agreement between the two is found to be very good. A correlation for the heat transfer is proposed for each of the two different cases of high and low Prandtl number.


2003 ◽  
Vol 125 (2) ◽  
pp. 282-288 ◽  
Author(s):  
Bassam A/K Abu-Hijleh

The problem of laminar natural convection from a horizontal cylinder with multiple equally spaced high conductivity permeable fins on its outer surface was investigated numerically. The effect of several combinations of number of fins and fin height on the average Nusselt number was studied over a wide range of Rayleigh number. Permeable fins provided much higher heat transfer rates compared to the more traditional solid fins for a similar cylinder configuration. The ratio between the permeable to solid Nusselt numbers increased with Rayleigh number, number of fins, and fin height. This ratio was as high as 8.4 at Rayleigh number of 106, non-dimensional fin height of 2.0, and with 11 equally spaced fins. The use of permeable fins is very advantageous when high heat transfer rates are needed such as in today’s high power density electronic components.


Sign in / Sign up

Export Citation Format

Share Document