scholarly journals On a Stochastic SEIS Model with Treatment Rate of Latent Population

2014 ◽  
Vol 2014 ◽  
pp. 1-16
Author(s):  
Shujing Gao ◽  
Yanfei Dai ◽  
Yan Zhang ◽  
Yujiang Liu

The asymptotic dynamics of a stochastic SEIS epidemic model with treatment rate of latent population is investigated. First, we show that the system provides a unique positive global solution starting from the positive initial value. Then, the long-term asymptotic behavior of the model is studied: ifR0, which is called the basic reproduction number of the corresponding deterministic model, is not more than unity, the solution of the model is oscillating around the disease-free equilibrium of the corresponding deterministic system, whereas ifR0is larger than unity, we show how the solution spirals around the endemic equilibrium of deterministic system under certain parametric restrictions. Finally, numerical simulations are carried out to support our theoretical findings.

2013 ◽  
Vol 2013 ◽  
pp. 1-12 ◽  
Author(s):  
Yanli Zhou ◽  
Weiguo Zhang ◽  
Sanling Yuan

The dynamics of a stochastic SIS epidemic model is investigated. First, we show that the system admits a unique positive global solution starting from the positive initial value. Then, the long-term asymptotic behavior of the model is studied: whenR0≤1, we show how the solution spirals around the disease-free equilibrium of deterministic system under some conditions; whenR0>1, we show that the stochastic model has a stationary distribution under certain parametric restrictions. In particular, we show that random effects may lead the disease to extinction in scenarios where the deterministic model predicts persistence. Finally, numerical simulations are carried out to illustrate the theoretical results.


Author(s):  
Xiaoming Fan ◽  
Zhigang Wang

AbstractAn SEIR epidemic model with constant immigration and random fluctuation around the endemic equilibrium is considered. As a special case, a deterministic system discussed by Li et al. will be incorporated into the stochastic version given by us. We carry out a detailed analysis on the asymptotic behavior of the stochastic model, also regarding of the basic reproduction number ℛ


2019 ◽  
Vol 12 (4) ◽  
pp. 1533-1552
Author(s):  
Kambire Famane ◽  
Gouba Elisée ◽  
Tao Sadou ◽  
Blaise Some

In this paper, we have formulated a new deterministic model to describe the dynamics of the spread of chikunguya between humans and mosquitoes populations. This model takes into account the variation in mortality of humans and mosquitoes due to other causes than chikungunya disease, the decay of acquired immunity and the immune sytem boosting. From the analysis, itappears that the model is well posed from the mathematical and epidemiological standpoint. The existence of a single disease free equilibrium has been proved. An explicit formula, depending on the parameters of the model, has been obtained for the basic reproduction number R0 which is used in epidemiology. The local asymptotic stability of the disease free equilibrium has been proved. The numerical simulation of the model has confirmed the local asymptotic stability of the diseasefree equilbrium and the existence of endmic equilibrium. The varying effects of the immunity parameters has been analyzed numerically in order to provide better conditions for reducing the transmission of the disease.


2021 ◽  
Vol 0 (0) ◽  
pp. 0
Author(s):  
Peter J. Witbooi ◽  
Grant E. Muller ◽  
Marshall B. Ongansie ◽  
Ibrahim H. I. Ahmed ◽  
Kazeem O. Okosun

<p style='text-indent:20px;'>A cholera population model with stochastic transmission and stochasticity on the environmental reservoir of the cholera bacteria is presented. It is shown that solutions are well-behaved. In comparison with the underlying deterministic model, the stochastic perturbation is shown to enhance stability of the disease-free equilibrium. The main extinction theorem is formulated in terms of an invariant which is a modification of the basic reproduction number of the underlying deterministic model. As an application, the model is calibrated as for a certain province of Nigeria. In particular, a recent outbreak (2019) in Nigeria is analysed and featured through simulations. Simulations include making forward projections in the form of confidence intervals. Also, the extinction theorem is illustrated through simulations.</p>


2018 ◽  
Vol 15 (06) ◽  
pp. 1850055 ◽  
Author(s):  
Abhishek Kumar ◽  
Nilam

In this paper, we present a mathematical study of a deterministic model for the transmission and control of epidemics. The incidence rate of susceptible being infected is very crucial in the spread of disease. The delay in the incidence rate is proved fatal. In the present study, we propose an SIR mathematical model with the delay in the infected population. We are taking nonlinear incidence rate for epidemics along with Holling type II treatment rate for understanding the dynamics of the epidemics. Model stability has been done by the basic reproduction number [Formula: see text]. The model is locally asymptotically stable for disease-free equilibrium [Formula: see text] when the basic reproduction number [Formula: see text] is less than one ([Formula: see text]). We investigated the stability of the model for disease-free equilibrium at [Formula: see text] equals to one using center manifold theory. We also investigated the stability for endemic equilibrium [Formula: see text] at [Formula: see text]. Further, numerical simulations are presented to exemplify the analytical studies.


2015 ◽  
Vol 2015 ◽  
pp. 1-9 ◽  
Author(s):  
Peter J. Witbooi ◽  
Grant E. Muller ◽  
Garth J. Van Schalkwyk

For a stochastic differential equation SVIR epidemic model with vaccination, we prove almost sure exponential stability of the disease-free equilibrium forR0<1, whereR0denotes the basic reproduction number of the underlying deterministic model. We study an optimal control problem for the stochastic model as well as for the underlying deterministic model. In order to solve the stochastic problem numerically, we use an approximation based on the solution of the deterministic model.


Author(s):  
A. B. Okrinya ◽  
E. Esekhaigbe

We construct a simple mathematical model that describes the dynamics of the transmission of COVID-19 disease in a human population. It accounts for the various phases of the disease and its mode of contact through infectious humans and surfaces. The contribution of asymptomatic humans in the dynamics of the disease is well represented. The model is a system of ordinary dierential equations that describes the evolution of humans in a range of COVID-19 states due to emergence of an index case. The analysis includes establishment of the basic reproduction number, R0, where, R0 < 1 signifies a disease free state that is locally asymptotically stable. A key result in this study shows some long term damped oscillatory behaviour that do not seem to end soon.


2020 ◽  
Author(s):  
A. O. Victor ◽  
H. K. Oduwole

AbstractThis paper focused on determining the asymptotical stability of the new model which establishes that a disease-free equilibrium state exists and is locally asymptotically stable when the basic reproduction number 0 ≤ R0 < 1 and the following threshold conditions (0 ≤ R1 < 1, 0 ≤ R2 < 1, 0 ≤ R3 < 1, 0 ≤ R4 < 1 and 0 ≤ R5 < 1, 0 ≤ R6 < 1, 0 ≤ R7 < 1, 0 ≤ R8 < 1) are satisfied. Results from the model analysis shows that the proportion of infected juvenile and adult sub-population in the presence of High Active Anteritroviral Therapy (HAART) drastically reduce to a zero (R0 = 0) as compared to the infected age-structured population when treatment rate is low and the net transmission rate is near zero.


Author(s):  
Debadatta Adak ◽  
Abhijit Majumder ◽  
Nandadulal Bairagi

AbstractThe world has been facing the biggest virological invasion in the form of Covid-19 pandemic since the beginning of the year 2020. In this paper, we consider a deterministic epidemic model of four compartments classified based on the health status of the populations of a given country to capture the disease progression. A stochastic extension of the deterministic model is further considered to capture the uncertainty or variation observed in the disease transmissibility. In the case of a deterministic system, the disease-free equilibrium will be globally asymptotically stable if the basic reproduction number is less than unity, otherwise, the disease persists. Using Lyapunov functional methods, we prove that the infected population of the stochastic system tends to zero exponentially almost surely if the basic reproduction number is less than unity. The stochastic system has no interior equilibrium, however, its asymptotic solution is shown to fluctuate around the endemic equilibrium of the deterministic system under some parametric restrictions, implying that the infection persists. A case study with the Covid-19 epidemic data of Spain is presented and various analytical results have been demonstrated. The epidemic curve in Spain clearly shows two waves of infection. The first wave was observed during March-April and the second wave started in the middle of July and not completed yet. A real-time basic reproduction number has been given to illustrate the epidemiological status of Spain throughout the study period. Estimated cumulative numbers of confirmed and death cases are 1,613,626 and 42,899, respectively, with case fatality rate 2.66 per cent till the deadly virus is eliminated from Spain.


2018 ◽  
Vol 2018 ◽  
pp. 1-8 ◽  
Author(s):  
Sibaliwe Maku Vyambwera ◽  
Peter Witbooi

We propose a stochastic compartmental model for the population dynamics of tuberculosis. The model is applicable to crowded environments such as for people in high density camps or in prisons. We start off with a known ordinary differential equation model, and we impose stochastic perturbation. We prove the existence and uniqueness of positive solutions of a stochastic model. We introduce an invariant generalizing the basic reproduction number and prove the stability of the disease-free equilibrium when it is below unity or slightly higher than unity and the perturbation is small. Our main theorem implies that the stochastic perturbation enhances stability of the disease-free equilibrium of the underlying deterministic model. Finally, we perform some simulations to illustrate the analytical findings and the utility of the model.


Sign in / Sign up

Export Citation Format

Share Document