scholarly journals Multiresponse Optimization of Process Parameters in Turning of GFRP Using TOPSIS Method

2014 ◽  
Vol 2014 ◽  
pp. 1-10 ◽  
Author(s):  
Arun Kumar Parida ◽  
Bharat Chandra Routara

Taguchi’s design of experiment is utilized to optimize the process parameters in turning operation with dry environment. Three parameters, cutting speed (v), feed (f), and depth of cut (d), with three different levels are taken for the responses like material removal rate (MRR) and surface roughness (Ra). The machining is conducted with Taguchi L9 orthogonal array, and based on the S/N analysis, the optimal process parameters for surface roughness and MRR are calculated separately. Considering the larger-the-better approach, optimal process parameters for material removal rate are cutting speed at level 3, feed at level 2, and depth of cut at level 3, that is, v3-f2-d3. Similarly for surface roughness, considering smaller-the-better approach, the optimal process parameters are cutting speed at level 1, feed at level 1, and depth of cut at level 3, that is, v1-f1-d3. Results of the main effects plot indicate that depth of cut is the most influencing parameter for MRR but cutting speed is the most influencing parameter for surface roughness and feed is found to be the least influencing parameter for both the responses. The confirmation test is conducted for both MRR and surface roughness separately. Finally, an attempt has been made to optimize the multiresponses using technique for order preference by similarity to ideal solution (TOPSIS) with Taguchi approach.

Author(s):  
Amritpal Singh ◽  
Rakesh Kumar

In the present study, Experimental investigation of the effects of various cutting parameters on the response parameters in the hard turning of EN36 steel under the dry cutting condition is done. The input control parameters selected for the present work was the cutting speed, feed and depth of cut. The objective of the present work is to minimize the surface roughness to obtain better surface finish and maximization of material removal rate for better productivity. The design of experiments was done with the help of Taguchi L9 orthogonal array. Analysis of variance (ANOVA) was used to find out the significance of the input parameters on the response parameters. Percentage contribution for each control parameter was calculated using ANOVA with 95 % confidence value. From results, it was observed that feed is the most significant factor for surface roughness and the depth of cut is the most significant control parameter for Material removal rate.


This study uses Taguchi methodology and Gray Relational Analysis approach to explore the optimization of face milling process parameters for Al 6061 T6 alloy.Surface Roughness (Ra), Material Removal Rate (MRR) has been identified as the objective of performance and productivity.The tests were performed by selecting cutting speed (mm / min), feed rate (mm / rev) and cutting depth (mm) at three settings on the basis of Taguchi's L9 orthogonal series.The grey relational approach was being used to establish a multiobjective relationship between both the parameters of machining and the characteristics of results. To find the optimum values of parameters in the milling operation, the response list and plots are used and found to be Vc2-f1-d3. To order to justify the optimum results, the confirmation tests are performed.The machining process parameters for milling were thus optimized in this research to achieve the combined goals such as low surface roughness and high material removal rate on Aluminum 6061 t6.It was concluded that depth of cut is the most influencing parameter followed by feed rate and cutting velocity.


2018 ◽  
Vol 7 (1) ◽  
pp. 44-55 ◽  
Author(s):  
Dian Ridlo Pamuji ◽  
Muhammad Abdul Wahid ◽  
Abdul Rohman ◽  
Achmad As’ad Sonief ◽  
Moch Agus Choiron

A research was conducted for the optimization of the turning process st 60 tool steel with multiple performance characteristics based on the orthogonal array with Taguchi-WPCA method. Minimum Quantity Cooling Lubrication (MQCL) metode was applied as a coolant. The experimental studies were conducted under varying the cutting speed, feeding, depth of cut and type of coolant. The optimized multiple performance characteristics were surface roughness, and material removal rate. An orthogonal array, signal-to-noise ratio, grey relational analysis, weighted pricipal component analysis and analysis of variance were employed to study the multiple performance characteristics. Experimental results show that cutting speed gives the highest contribution for minimize of surface roughness and maximize of material removal rate, followed by feeding speed, type of coolant and depth of cut. The minimum of surface roughness and maximize of material removal rat could be obtained by using the values of cutting speed, feeding speed,  depth of cut and type of coolant of 172.95 m/minute, 0.053 mm/rev, 0.25 mm, and vegetable oil as a coolant respectively.


In many material processing and manufacturing industries quality and productivity are two important requirements but these are more antithetical criteria in any machining operations. So, it is vital to optimize the productivity and quality simultaneously. The main objective of this paper is to optimize the process parameters of drilling operations such as cutting speed, feed, and point angle on aluminum alloy 7075. Al 7075 is one of the multifunctional materials in various applications. Taguchi is mostly used for data analysis and optimization of process parameters for getting maximum material removal rate and least surface roughness factor. Machining operations were conducted on CNC milling machine. The number of drilling experiments was performed on aluminum 7075 using HSS drill bit on CNC milling machine. The investigation of variance (ANOVA) was engaged to find the most notable control factors affecting the material removal rate & surface roughness. The conclusions of present work were drawn from several experimental trails; it was found that at the 9th experimental trail, point angle was most significant x factor for surface roughness and feed is the most affecting factor for material removal rate.


2020 ◽  
Vol 1158 ◽  
pp. 115-131
Author(s):  
Md. Rezaul Karim ◽  
Rifat Ahasan Siddique ◽  
Farhana Dilwar

This paper emphases on the effect of various machining constraint on surface roughness and material removal rate in turning SiC reinforced Al alloy composite through taguchi orthogonal array based experimental analysis which has been further optimized using principal component analysis (PCA). Experimental investigation has been conducted under minimum quality lubricant (MQL) cutting environment. Palm oil has been used as lubricant where flow rate and pressure were kept at 120 ml/hr and 8 bar. The whole experiment has been designed using L25 orthogonal array having three input parameters and five different level to measure surface roughness and material removal rate. Taguchi S/N ratio-based optimization has been implemented where smaller the better criteria has been used for surface roughness whereas larger the better criteria has been used for material removal rate. From Analysis of variance, it is observed that cutting speed and feed rate are the most prominent factor for surface roughness. Nevertheless, Depth of cut and cutting speed are the most dominant factor for material removal rate. While comparing the predicted output values with experimental values, MAPE value is found in the range of 0.23 % for surface roughness and 0.045 % for material removal rate which is in very much tolerable range. Correlation coefficient value for experimental values of the resultant output is 0.98286 and 0.99869 respectively which signifies the effectiveness of the whole experiment. Subsequently, machining parameters were optimized using PCA technique. To attain satisfactory response values, depth of cut, cutting speed and feed rate need to be at 0.85 mm, 396 m/min and 0.16 mm/rev respectively. By applying the model, surface roughness of 0.7257 μm and MRR of 53856 mm3/min can be obtained. Keywords: SiC reinforced Al alloy; Turing; Minimum Quality Lubricant; Surface Roughness; MRR; Taguchi orthogonal array; Principal component analysis


2020 ◽  
Vol 12 (2) ◽  
pp. 133-142
Author(s):  
Chinmaya PADHY ◽  
Pariniti SINGH

Current developments in manufacturing industries consider developing a suitable optimization technique for achieving improved machining performance. This study investigates the optimum values of machining parameters required namely –cutting speed (v), feed rate (f) and depth-of-cut (d) during dry hard turning of Inconel 625 with the aim of enhancing the productivity by minimizing surface roughness (Ra), cutting force (Fc), whereas maximizing material removal rate(MRR). This kind of multi-response process variable (MRP) problems usually known as multi-objective optimizations (MOOs) are solved with the help of Taguchi- Grey Relational Approach (T-GRA). Thus, here is a study conducted to apply Taguchi and Grey relational analysis to optimize multiple performance characteristics during dry hard turning of Inconel -625. As a result, the attained process variables, viz., cutting speed (60 m/min), feed rate (0.3 mm/rev), depth- of- cut (0.25mm) lead to value of optimum response variables –mean cutting force (340 N), surface roughness (0.998 μm) and material removal rate (0.786 mm3/min). In this setup, PVD coated carbide tool inserts were used for dry hard machining (turning) operation.


Author(s):  
A. Pandey ◽  
R. Kumar ◽  
A. K. Sahoo ◽  
A. Paul ◽  
A. Panda

The current research presents an overall performance-based analysis of Trihexyltetradecylphosphonium Chloride [[CH3(CH2)5]P(Cl)(CH2)13CH3] ionic fluid mixed with organic coconut oil (OCO) during turning of hardened D2 steel. The application of cutting fluid on the cutting interface was performed through Minimum Quantity Lubrication (MQL) approach keeping an eye on the detrimental consequences of conventional flood cooling. PVD coated (TiN/TiCN/TiN) cermet tool was employed in the current experimental work. Taguchi’s L9 orthogonal array and TOPSIS are executed to analysis the influences, significance and optimum parameter settings for predefined process parameters. The prime objective of the current work is to analyze the influence of OCO based Trihexyltetradecylphosphonium Chloride ionic fluid on flank wear, surface roughness, material removal rate, and chip morphology. Better quality of finish (Ra = 0.2 to 1.82 µm) was found with 1% weight fraction but it is not sufficient to control the wear growth. Abrasion, chipping, groove wear, and catastrophic tool tip breakage are recognized as foremost tool failure mechanisms. The significance of responses have been studied with the help of probability plots, main effect plots, contour plots, and surface plots and the correlation between the input and output parameters have been analyzed using regression model. Feed rate and depth of cut are equally influenced (48.98%) the surface finish while cutting speed attributed the strongest influence (90.1%). The material removal rate is strongly prejudiced by cutting speed (69.39 %) followed by feed rate (28.94%) whereas chip reduction coefficient is strongly influenced through the depth of cut (63.4%) succeeded by feed (28.8%). TOPSIS significantly optimized the responses with 67.1 % gain in closeness coefficient.


2020 ◽  
Vol 38 (10A) ◽  
pp. 1489-1503
Author(s):  
Marwa Q. Ibraheem

In this present work use a genetic algorithm for the selection of cutting conditions in milling operation such as cutting speed, feed and depth of cut to investigate the optimal value and the effects of it on the material removal rate and tool wear. The material selected for this work was Ti-6Al-4V Alloy using H13A carbide as a cutting tool. Two objective functions have been adopted gives minimum tool wear and maximum material removal rate that is simultaneously optimized. Finally, it does conclude from the results that the optimal value of cutting speed is (1992.601m/min), depth of cut is (1.55mm) and feed is (148.203mm/rev) for the present work.


2015 ◽  
Vol 1115 ◽  
pp. 12-15
Author(s):  
Nur Atiqah ◽  
Mohammad Yeakub Ali ◽  
Abdul Rahman Mohamed ◽  
Md. Sazzad Hossein Chowdhury

Micro end milling is one of the most important micromachining process and widely used for producing miniaturized components with high accuracy and surface finish. This paper present the influence of three micro end milling process parameters; spindle speed, feed rate, and depth of cut on surface roughness (Ra) and material removal rate (MRR). The machining was performed using multi-process micro machine tools (DT-110 Mikrotools Inc., Singapore) with poly methyl methacrylate (PMMA) as the workpiece and tungsten carbide as its tool. To develop the mathematical model for the responses in high speed micro end milling machining, Taguchi design has been used to design the experiment by using the orthogonal array of three levels L18 (21×37). The developed models were used for multiple response optimizations by desirability function approach to obtain minimum Ra and maximum MRR. The optimized values of Ra and MRR were 128.24 nm, and 0.0463 mg/min, respectively obtained at spindle speed of 30000 rpm, feed rate of 2.65 mm/min, and depth of cut of 40 μm. The analysis of variance revealed that spindle speeds are the most influential parameters on Ra. The optimization of MRR is mostly influence by feed rate. Keywords:Micromilling,surfaceroughness,MRR,PMMA


Sign in / Sign up

Export Citation Format

Share Document