scholarly journals Long-Stroke Nanopositioning Stage Driven by Piezoelectric Motor

2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Yong Wang ◽  
Fujun Sun ◽  
Junhui Zhu ◽  
Ming Pang ◽  
Changhai Ru

This paper reported a biaxial nanopositioning stage single-driven by piezoelectric motor. The employed piezoelectric motor can perform two different driving modes, namely, AC drive mode to drive in long-stroke and at high-speed and DC scanning mode with the high-resolution of several nanometers, which satisfies the requirements of both long-stroke and nanoresolution. To compensate for the effects of the variable friction force and some unpredictable disturbances, a novel backward error compensation (BEC) positioning control method integrated of the two driving modes and a double closed-loop PID controller system are proposed to obtain a high-accuracy positional motion. The experiment results demonstrate that the nanopositioning stage with large travel range of 300 mm × 300 mm has a fine speed characteristic and resolution is 5 nm. In the experiments of different travels up to 15 mm, calibrated by a commercial laser vibrometer, the positioning accuracy is proved within 55 nm inx-axis and 40 nm iny-axis with standard deviation less than 40 nm inx-axis and 30 nm iny-axis and the final position locking can be limited to 10 nm, meeting the requirements of micromanipulation technology.

2021 ◽  
Vol 11 (15) ◽  
pp. 6899
Author(s):  
Abdul Aabid ◽  
Sher Afghan Khan ◽  
Muneer Baig

In high-speed fluid dynamics, base pressure controls find many engineering applications, such as in the automobile and defense industries. Several studies have been reported on flow control with sudden expansion duct. Passive control was found to be more beneficial in the last four decades and is used in devices such as cavities, ribs, aerospikes, etc., but these need additional control mechanics and objects to control the flow. Therefore, in the last two decades, the active control method has been used via a microjet controller at the base region of the suddenly expanded duct of the convergent–divergent (CD) nozzle to control the flow, which was found to be a cost-efficient and energy-saving method. Hence, in this paper, a systemic literature review is conducted to investigate the research gap by reviewing the exhaustive work on the active control of high-speed aerodynamic flows from the nozzle as the major focus. Additionally, a basic idea about the nozzle and its configuration is discussed, and the passive control method for the control of flow, jet and noise are represented in order to investigate the existing contributions in supersonic speed applications. A critical review of the last two decades considering the challenges and limitations in this field is expressed. As a contribution, some major and minor gaps are introduced, and we plot the research trends in this field. As a result, this review can serve as guidance and an opportunity for scholars who want to use an active control approach via microjets for supersonic flow problems.


Author(s):  
Matteo Facchino ◽  
Atsushi Totsuka ◽  
Elisa Capello ◽  
Satoshi Satoh ◽  
Giorgio Guglieri ◽  
...  

AbstractIn the last years, Control Moment Gyros (CMGs) are widely used for high-speed attitude control, since they are able to generate larger torque compared to “classical” actuation systems, such as Reaction Wheels . This paper describes the attitude control problem of a spacecraft, using a Model Predictive Control method. The features of the considered linear MPC are: (i) a virtual reference, to guarantee input constraints satisfaction, and (ii) an integrator state as a servo compensator, to reduce the steady-state error. Moreover, the real-time implementability is investigated using an experimental testbed with four CMGs in pyramidal configuration, where the capability of attitude control and the optimization solver for embedded systems are focused on. The effectiveness and the performance of the control system are shown in both simulations and experiments.


2010 ◽  
Vol 44-47 ◽  
pp. 321-325
Author(s):  
Liang Hua ◽  
Lin Lin Lv ◽  
Ju Ping Gu ◽  
Yu Jian Qiang

The key technilogies of ship-welding mobile robot applied to ship-building in plane block production line were researched and realized. The mechanical structure design of the robot was completed. The motion-controlling system of of two-wheel differential driving mobile robot was developed. A novel precision positioning control method of welding torch using ultrasonic motors was putforward. The mechanism and control-driven system of precision positioning system for welding torch were completed. The platform of obstacle avoidance navigation system was designed and the strategies of seam tracking, trajectory and posture adjustment were preliminary studied. The methods and results put forward in the paper could act as the base of deep research on the theories and technologies of ship-welding mobile robot.


2011 ◽  
Vol 383-390 ◽  
pp. 79-85
Author(s):  
Dong Yuan ◽  
Xiao Jun Ma ◽  
Wei Wei

Aiming at the problems such as switch impulsion, insurmountability for influence caused by nonlinearity in one tank gun control system which adopts double PID controller to realize the multimode switch control between high speed and low speed movement, the system math model is built up; And then, Model Reference Adaptive Control (MRAC) method based on nonroutine reference model is brought in and the adaptive gun controller is designed. Consequently, the compensation of nonlinearity and multimode control are implemented. Furthermore, the Tracking Differentiator (TD) is affiliated to the front of controller in order to restrain the impulsion caused by mode switch. Finally, the validity of control method in this paper is verified by simulation.


2012 ◽  
Vol 591-593 ◽  
pp. 303-306
Author(s):  
Xiao You Zhang ◽  
Akio Kifuji ◽  
Dong Jue He

Electrical discharge machining has the capability of machining all conductive materials regardless of hardness, and has the ability to deal with complex shapes. However, the speed and accuracy of conventional EDM are limited by probability and efficiency of the electrical discharges. This paper describes a three degrees of freedom (3-DOF) controlled, wide-bandwidth, high-precision, long-stroke magnetic drive actuator. The actuator can be attached to conventional electrical discharge machines to realize a high-speed and high-accuracy EDM. The actuator primarily consists of thrust and radial magnetic bearings, thrust and radial air bearings and a magnetic coupling mechanism. By using the thrust and radial magnetic bearings, the translational motions of the spindle can be controlled. The magnetic drive actuator possesses a positioning resolution of the order of micrometer, a bandwidth greater than 100Hz and a positioning stroke of 2mm.


Sign in / Sign up

Export Citation Format

Share Document