scholarly journals Dose Distributions of an192Ir Brachytherapy Source in Different Media

2014 ◽  
Vol 2014 ◽  
pp. 1-11
Author(s):  
C. H. Wu ◽  
Y. J. Liao ◽  
Y. W. Hsueh Liu ◽  
S. K. Hung ◽  
M. S. Lee ◽  
...  

This study used MCNPX code to investigate the brachytherapy192Ir dose distributions in water, bone, and lung tissue and performed radiophotoluminescent glass dosimeter measurements to verify the obtained MCNPX results. The results showed that the dose-rate constant, radial dose function, and anisotropy function in water were highly consistent with data in the literature. However, the lung dose near the source would be overestimated by up to 12%, if the lung tissue is assumed to be water, and, hence, if a tumor is located in the lung, the tumor dose will be overestimated, if the material density is not taken into consideration. In contrast, the lung dose far from the source would be underestimated by up to 30%. Radial dose functions were found to depend not only on the phantom size but also on the material density. The phantom size affects the radial dose function in bone more than those in the other tissues. On the other hand, the anisotropy function in lung tissue was not dependent on the radial distance. Our simulation results could represent valid clinical reference data and be used to improve the accuracy of the doses delivered during brachytherapy applied to patients with lung cancer.

2022 ◽  
Vol 30 (1) ◽  
pp. 691-708
Author(s):  
Nor Shazleen Ab Shukor ◽  
Marianie Musarudin ◽  
Reduan Abdullah ◽  
Mohd Zahri Abdul Aziz

This study aims to measure the radial dose function and anisotropy function F(r, θ) of high Dose Rate (HDR) 192Ir source in a fabricated water-equivalent phantom using Gafchromic® EBT3 film and TLD-100H and to compare the results obtained with the MCNP5 calculated values. The phantom was fabricated using Perspex PMMA material. For, the EBT3 films with a required dimension and TLD-100H chips were placed at r=1, 2, 3, 5, and 10 cm from the source. The F(r, θ) measurements were carried out at r=1, 2, 3, 5, and 10 cm with the angle range from 10° to 170°. The result of from EBT3 film and TLD-100H was in good agreement (2.10%±1.99). Compared to MCNP5, the differences are within 0.31% to 11.47% for EBT3 film and 0.08% to 10.58% for TLD-100H. For the F(r, θ), an average deviation with the MCNP5 calculation is 4.94%±2.7. For both and F(r, θ), the effects are prominent at r=10 cm. At this distance, the response of both Gafchromic® EBT3 film and TLD-100H shows less sensitivity as the dose followed the inverse square law. This work demonstrates that Gafchromic® EBT3 film dosimeter and TLD-100H are suitable dosimeters in 192Ir dosimetric measurements at a radial distance of ˂5 cm


Author(s):  
A Mozaffari ◽  
M Ghorbani

Objective: Brachytherapy sources are widely used for the treatment of cancer. The report of Task Group No. 43 (TG-43) of American Association of Physicists in Medicine is known as the most common method for the determination of dosimetric parameters for brachytherapy sources. The aim of this study is to obtain TG-43 dosimetric parameters for 60Co, 137Cs, 192Ir and 103Pd brachytherapy sources by Monte Carlo simulation. Methods: In this study, 60Co (model Co0.A86), 137Cs (model 6520-67), 192Ir (model BEBIG) and 103Pd (model OptiSeed) brachytherapy sources were simulated using MCNPX Monte Carlo code. To simulate the sources, the exact geometric characterization of each source was defined in Monte Carlo input programs. Dosimetric parameters including air kerma strength, dose rate constant, radial dose function and anisotropy function were calculated for each source. Each input program was run with sufficient number of particle histories. The maximum type A statistical uncertainty in the simulation of the 60Co, 137Cs, 192Ir and 103Pd sources, were equal to 4%, 4%, 3.19% and 6.50%, respectively. Results: The results for dosimetry parameters of dose rate constant, radial dose function and anisotropy function for the 60Co, 137Cs, 192Ir and 103Pd sources in this study demonstrated good agreement with other studies. Conclusion: Based on the good agreement between the results of this study and other studies, the TG-43 results for Co0.A86 60Co, 67-65200 137Cs, BEBIG 192Ir and OptiSeed 103Pd sources are validated and can be used as input data in treatment planning systems (TPSs) and to validate the TPS calculations.


2017 ◽  
Vol 51 (1) ◽  
pp. 101-112 ◽  
Author(s):  
Mahdi Ghorbani ◽  
Benyamin Khajetash ◽  
Najmeh Ghatei ◽  
Mohammad Mehrpouyan ◽  
Ali S. Meigooni ◽  
...  

Abstract Background Interstitial rotating shield brachytherapy (I-RSBT) is a recently developed method for treatment of prostate cancer. In the present study TG-43 dosimetric parameters of a 153Gd source were obtained for use in I-RSBT. Materials and methods A 153Gd source located inside a needle including a Pt shield and an aluminum window was simulated using MCNPX Monte Carlo code. Dosimetric parameters of this source model, including air kerma strength, dose rate constant, radial dose function and 2D anisotropy function, with and without the shields were calculated according to the TG-43 report. Results The air kerma strength was found to be 6.71 U for the non-shielded source with 1 GBq activity. This value was found to be 0.04 U and 6.19 U for the Pt shield and Al window cases, respectively. Dose rate constant for the non-shielded source was found to be 1.20 cGy/(hU). However, for a shielded source with Pt and aluminum window, dose rate constants were found to be 0.07 cGy/(hU) and 0.96 cGy/(hU), on the shielded and window sides, respectively. The values of radial dose function and anisotropy function were tabulated for these sources. Additionally, isodose curves were drawn for sources with and without shield, in order to evaluate the effect of shield on dose distribution. Conclusions Existence of the Pt shield may greatly reduce the dose to organs at risk and normal tissues which are located toward the shielded side. The calculated air kerma strength, dose rate constant, radial dose function and 2D anisotropy function data for the 153Gd source for the non-shielded and the shielded sources can be used in the treatment planning system (TPS).


Cancers ◽  
2021 ◽  
Vol 13 (21) ◽  
pp. 5315
Author(s):  
Konstantinos P. Chatzipapas ◽  
Dimitris Plachouris ◽  
Panagiotis Papadimitroulas ◽  
Konstantinos A. Mountris ◽  
Julien Bert ◽  
...  

This study aims to validate GATE and GGEMS simulation toolkits for brachytherapy applications and to provide accurate models for six commercial brachytherapy seeds, which will be freely available for research purposes. The AAPM TG-43 guidelines were used for the validation of two Low Dose Rate (LDR), three High Dose Rate (HDR), and one Pulsed Dose Rate (PDR) brachytherapy seeds. Each seed was represented as a 3D model and then simulated in GATE to produce one single Phase-Space (PHSP) per seed. To test the validity of the simulations’ outcome, referenced data (provided by the TG-43) was compared with GATE results. Next, validation of the GGEMS toolkit was achieved by comparing its outcome with the GATE MC simulations, incorporating clinical data. The simulation outcomes on the radial dose function (RDF), anisotropy function (AF), and dose rate constant (DRC) for the six commercial seeds were compared with TG-43 values. The statistical uncertainty was limited to 1% for RDF, to 6% (maximum) for AF, and to 2.7% (maximum) for the DRC. GGEMS provided a good agreement with GATE when compared in different situations: a) Homogeneous water sphere, b) heterogeneous CT phantom, and c) a realistic clinical case. In addition, GGEMS has the advantage of very fast simulations. For the clinical case, where TG-186 guidelines were considered, GATE required 1 h for the simulation while GGEMS needed 162 s to reach the same statistical uncertainty. This study produced accurate models and simulations of their emitted spectrum of commonly used commercial brachytherapy seeds which are freely available to the scientific community. Furthermore, GGEMS was validated as an MC GPU based tool for brachytherapy. More research is deemed necessary for the expansion of brachytherapy seed modeling.


1913 ◽  
Vol 18 (5) ◽  
pp. 500-506 ◽  
Author(s):  
Albert A. Ghoreyeb ◽  
Howard T. Karsner

The most striking point brought out in this study is that as long as a definite pressure is maintained in either the pulmonary or bronchial circulations, the admixture of bloods is extremely limited. It is easily conceivable that more mixture occurs normally than under the conditions of the experiment, but there is no reason for considering this to be a large difference. If, however, in either system the pressure sinks to zero the possibility of supply by the other system becomes evident. It takes much longer for the mass injected through the bronchial arteries to penetrate to all parts of the lung than when the mass is injected through the pulmonary artery; but when accomplished, the injection reaches to all capillaries including those of the pleura, the only vessels remaining uninjected being the larger trunks of the pulmonary artery. On the other hand, the injection of the bronchial vessels by way of the pulmonary arteries is not complete with normal pressure, but occurs rapidly when a high pulmonary pressure is employed. It is therefore probable that either circulation can suffice for the simple nutritive demands of the lung if the other system is interfered with. It has been shown that embolism of the pulmonary artery, without other circulatory disturbance, does not lead to necrosis of the affected area of the lung, but it is probable that the preservation of circulation is not due to collateral bronchial circulation so much as to the free anastomosis and early division into capillaries of the pulmonary artery. In support of this statement is the fact that the appearance is not altered when the bronchials are ligated at their origin. The same ligation shows no subsequent interference with the nutrition of the bronchi up to a period of five weeks, demonstrating that the pulmonary circulation is sufficient to provide for the nutrition of the bronchi. If, however, as Virchow has shown, the pulmonary artery supplying an entire lobe be occluded, the bronchial circulation can and does suffice for the nutrition of the lobe. In the case of the occlusion of a branch of the pulmonary artery the pressure in the area interfered with does not sink to zero because of the collateral circulation in this area; whereas, if the main trunk is occluded no collateral supply is available, the pressure sinks to zero, and the bronchial artery becomes available as a source of blood supply. It must be remembered that the lung tissue, as a whole, has ready access to oxygen and this gas is the nutritive element acquired by the blood in the lungs. From these studies it would appear that the part of the lung tissue not in intimate contact with oxygen in the air is supplied by oxygenated blood of the bronchial arteries, and that the tissues through which the pulmonary blood circulates take up whatever organized nutriment they need from the pulmonary blood and possibly provide for their oxygen and carbon dioxide interchange (which must be very slight) either directly with the alveolar air, or by finding sufficient oxygen in the venous blood of the pulmonary artery. The studies of the injected specimens confirm Küttner's findings of a very rapid breaking up of the pulmonary artery into capillaries. In all the specimens studied it was found that although the pleural vessels can be injected by way of the bronchial arteries when there is zero pressure in the pulmonary arteries, yet when the two sets of vessels are injected simultaneously in the dog, the pleural vessels invariably derive their supply of injection mass from the pulmonary artery.


Geophysics ◽  
2010 ◽  
Vol 75 (4) ◽  
pp. WA179-WA188 ◽  
Author(s):  
Alan Yusen Ley-Cooper ◽  
James Macnae ◽  
Andrea Viezzoli

Most airborne electromagnetic (AEM) data are processed using successive 1D approximations to produce stitched conductivity-depth sections. Because the current induced in the near surface by an AEM system preferentially circulates at some radial distance from a horizontal loop transmitter (sometimes called the footprint), the section plotted directly below a concentric transmitter-receiver system actually arises from currents induced in the vicinity rather than directly underneath. Detection of paleochannels as conduits for groundwater flow is a common geophysical exploration goal, where locally 2D approximations may be valid for an extinct riverbed or filled valley. Separate from effects of salinity, these paleochannels may be conductive if clay filled or resistive if sand filled and incised into a clay host. Because of the wide system footprint, using stitched 1D approximations or inversions may lead to misleading conductivity-depth images or sections. Near abrupt edges of an extensive conductive layer, the lateral falloff in AEM amplitudes tends to produce a drooping tail in a conductivity section, sometimes coupled with alocal peak where the AEM system is maximally coupled to currents constrained to flow near the conductor edge. Once the width of a conductive ribbon model is less than the system footprint, small amplitudes result, and the source is imaged too deeply in the stitched 1D section. On the other hand, a narrow resistive gap in a conductive layer is incorrectly imaged as a drooping region within the layered conductor; below, the image falsely contains a blocklike poor conductor extending to depth. Additionally, edge-effect responses often are imaged as deep conductors with an inverted horseshoe shape. Incorporating lateral constraints in 1D AEM inversion (LCI) software, designed to improve resolution of continuous layers, more accurately recovers the depth to extensive conductors. The LCI, however, as with any AEM modeling methodology based on 1D forward responses, has limitations in detecting and imaging in the presence of strong 3D lateral discontinuities of dimensions smaller than the annulus of resolution. The isotropic, horizontally slowly varying layered-earth assumption devalues and limits AEM’s 3D detection capabilities. The need for smart, fast algorithms that account for 3D varying electrical properties remains.


2005 ◽  
Vol 50 (6) ◽  
pp. 1109-1117 ◽  
Author(s):  
Carmen S Guzmán Calcina ◽  
Adelaide de Almeida ◽  
José R Oliveira Rocha ◽  
Felipe Chen Abrego ◽  
Oswaldo Baffa

1903 ◽  
Vol 3 (9-10) ◽  
pp. 548-549
Author(s):  
E. Board

Lung surgery is one of the youngest departments of surgical science. The basis for the development of methods of operative intervention in pulmonary diseases lies in the 1st possibility of preventing the danger of pneumothorax, which (danger) is currently so insignificant that some surgeons consider it even necessary to cause preliminary pneumothorax. On the other hand, the experimental data have shown the possibility of the loss of parts of the lung tissue and the conditions for the healing of its wounds.


Sign in / Sign up

Export Citation Format

Share Document