scholarly journals Specific Intracellular Uptake of Herceptin-Conjugated CdSe/ZnS Quantum Dots into Breast Cancer Cells

2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
Seung-Jin Han ◽  
Pierson Rathinaraj ◽  
Soo-Young Park ◽  
Young Kyoo Kim ◽  
Joon Hyung Lee ◽  
...  

Herceptin, a typical monoclonal antibody, was immobilized on the surface of CdSe/ZnS core-shell quantum dots (QDs) to enhance their specific interactions with breast cancer cells (SK-BR3). The mean size of the core-shell quantum dots (28 nm), as determined by dynamic light scattering, increased to 86 nm after herceptin immobilization. Thein vitrocell culture experiment showed that the keratin forming cancer cells (KB) proliferated well in the presence of herceptin-conjugated QDs (QD-Her, 5 nmol/mL), whereas most of the breast cancer cells (SK-BR3) had died. To clarify the mechanism of cell death, the interaction of SK-BR3 cells with QD-Her was examined by confocal laser scanning microscopy. As a result, the QD-Her bound specifically to the membrane of SK-BR3, which became almost saturated after 6 hours incubation. This suggests that the growth signal of breast cancer cells is inhibited completely by the specific binding of herceptin to the Her-2 receptor of SK-BR3 membrane, resulting in cell death.

Life ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 832
Author(s):  
Li-Yu Chen ◽  
Gurunath Apte ◽  
Annerose Lindenbauer ◽  
Marion Frant ◽  
Thi-Huong Nguyen

Cancer cells circulating in blood vessels activate platelets, forming a cancer cell encircling platelet cloak which facilitates cancer metastasis. Heparin (H) is frequently used as an anticoagulant in cancer patients but up to 5% of patients have a side effect, heparin-induced thrombocytopenia (HIT) that can be life-threatening. HIT is developed due to a complex interaction among multiple components including heparin, platelet factor 4 (PF4), HIT antibodies, and platelets. However, available information regarding the effect of HIT components on cancers is limited. Here, we investigated the effect of these materials on the mechanical property of breast cancer cells using atomic force microscopy (AFM) while cell spreading was quantified by confocal laser scanning microscopy (CLSM), and cell proliferation rate was determined. Over time, we found a clear effect of each component on cell elasticity and cell spreading. In the absence of platelets, HIT antibodies inhibited cell proliferation but they promoted cell proliferation in the presence of platelets. Our results indicate that HIT complexes influenced the development of breast cancer cells.


RSC Advances ◽  
2014 ◽  
Vol 4 (71) ◽  
pp. 37479-37490 ◽  
Author(s):  
Susanta Bera ◽  
Monisankar Ghosh ◽  
Moumita Pal ◽  
Nilanjana Das ◽  
Suchandrima Saha ◽  
...  

Eu incorporated ZnO–graphene nanocomposite in human breast cancer cells (MCF7) under a confocal laser scanning microscope.


2011 ◽  
Vol 10 (01n02) ◽  
pp. 199-203 ◽  
Author(s):  
RICHA JACKERAY ◽  
GURPAL SINGH ◽  
SWATI JAIN ◽  
ZAINUL ABID CKV ◽  
HARPAL SINGH ◽  
...  

A sensitive and rapid method for the detection of pathogenic bacteria (Salmonella typhi) in water sample was developed using core-shell CdSe / ZnS quantum dots (QDs) as fluorescence label. Surface-functionalized core-shell quantum dots were synthesized by successive ion layer adsorption and reaction (SILAR) technique and were made hydrophilic by ligand exchange method. Developed hydrophobic and hydrophilic QDs were characterized by transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR), and spectrofluorimetry. Carboxy- terminated QDs were conjugated with bacteria-specific antibodies (S. typhi-specific IgG) for the preparation of photostable fluorescent label and were characterized by various techniques like spectrofluorimetry and enzyme-linked immunosorbent assay (ELISA) for their photoluminescence and successful bioconjugation. Antibody (Ab)-conjugated QDs were incubated with bacteria-contaminated water for S. typhi detection. Microscopic images and spectral profile of bacteria–Ab conjugated QDs complex were recorded by confocal laser scanning microscopy (CLSM). A sensitivity of 103 organisms/mL of targeted bacteria (S. typhi) could be attained in a period of about 2 h.


Author(s):  
Samad Beheshtirouy ◽  
Farhad Mirzaei ◽  
Shirin Eyvazi ◽  
Vahideh Tarhriz

: Breast cancer is a heterogeneous malignancy which is the second cause of mortality among women in the world. Increasing the resistance to anti-cancer drugs in breast cancer cells persuades researchers to search the novel therapies approaches for the treatment of the malignancy. Among the novel methods, therapeutic peptides which target and disrupt tumor cells have been of great interest. Therapeutic peptides are short amino acids monomer chains with high specificity to bind and modulate a protein interaction of interest. Several advantages of peptides such as specific binding on tumor cells surface, low molecular weight and low toxicity on normal cells make the peptides as an appealing therapeutic agents against solid tumors, particularly breast cancer. Also, National Institutes of Health (NIH) describes therapeutic peptides as suitable candidate for the treatment of drug-resistant breast cancer. In this review, we attempt to review the different therapeutic peptides against breast cancer cells which can be used in treatment and diagnosis of the malignancy. Meanwhile, we presented an overview of peptide vaccines which have been developed for the treatment of breast cancer.


2020 ◽  
Vol 173 ◽  
pp. 113724 ◽  
Author(s):  
Damu Sunilkumar ◽  
G. Drishya ◽  
Aneesh Chandrasekharan ◽  
Sanu K. Shaji ◽  
Chinchu Bose ◽  
...  

Nanoscale ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 3644-3653
Author(s):  
Hieu T. M. Nguyen ◽  
Nitesh Katta ◽  
Jessica A. Widman ◽  
Eri Takematsu ◽  
Xu Feng ◽  
...  

Laser nanobubbles induce dendritic cell activation in breast cancer cells.


Nanomaterials ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 462 ◽  
Author(s):  
Joanna Pilch ◽  
Patrycja Kowalik ◽  
Piotr Bujak ◽  
Anna M. Nowicka ◽  
Ewa Augustin

Nanotechnology-based drug delivery provides a promising area for improving the efficacy of cancer treatments. Therefore, we investigate the potential of using quantum dots (QDs) as drug carriers for antitumor unsymmetrical bisacridine derivatives (UAs) to cancer cells. We examine the influence of QD–UA hybrids on the cellular uptake, internalization (Confocal Laser Scanning Microscope), and the biological response (flow cytometry and light microscopy) in lung H460 and colon HCT116 cancer cells. We show the time-dependent cellular uptake of QD–UA hybrids, which were more efficiently retained inside the cells compared to UAs alone, especially in H460 cells, which could be due to multiple endocytosis pathways. In contrast, in HCT116 cells, the hybrids were taken up only by one endocytosis mechanism. Both UAs and their hybrids induced apoptosis in H460 and HCT116 cells (to a greater extent in H460). Cells which did not die underwent senescence more efficiently following QDs–UAs treatment, compared to UAs alone. Cellular senescence was not observed in HCT116 cells following treatment with both UAs and their hybrids. Importantly, QDgreen/red themselves did not provoke toxic responses in cancer or normal cells. In conclusion, QDs are good candidates for targeted UA delivery carriers to cancer cells while protecting normal cells from toxic drug activities.


2021 ◽  
pp. 116112
Author(s):  
Chandrima Gain ◽  
Aparna Sarkar ◽  
Shrea Bural ◽  
Moumita Rakshit ◽  
Jeet Banerjee ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document