scholarly journals Stochastically Ultimate Boundedness and Global Attraction of Positive Solution for a Stochastic Competitive System

2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Shengliang Guo ◽  
Zhijun Liu ◽  
Huili Xiang

A stochastic competitive system is investigated. We first show that the positive solution of the above system does not explode to infinity in a finite time, and the existence and uniqueness of positive solution are discussed. Later, sufficient conditions for the stochastically ultimate boundedness of positive solution are derived. Also, with the help of Lyapunov function, sufficient conditions for the global attraction of positive solution are established. Finally, numerical simulations are presented to justify our theoretical results.

2015 ◽  
Vol 08 (05) ◽  
pp. 1550062 ◽  
Author(s):  
Ronghua Tan ◽  
Huili Xiang ◽  
Yiping Chen ◽  
Zhijun Liu

In the real world, the population systems are often subject to white noises and a system with such stochastic perturbations tends to be suitably modeled by stochastic differential equations. This paper is concerned with the dynamic behaviors of a delay stochastic competitive system. We first obtain the global existence of a unique positive solution of system. Later, we show that the solution of system will be stochastically ultimate boundedness. However, large noises may make the system extinct exponentially with probability one. Also, sufficient conditions for the global attractivity of system are established. Finally, illustrated examples are given to show the effectiveness of the proposed criteria.


Author(s):  
Hao Peng ◽  
Xinhong Zhang ◽  
Daqing Jiang

In this paper, we analyze a stochastic rabies epidemic model which is perturbed by both white noise and telegraph noise. First, we prove the existence of the unique global positive solution. Second, by constructing an appropriate Lyapunov function, we establish a sufficient condition for the existence of a unique ergodic stationary distribution of the positive solutions to the model. Then we establish sufficient conditions for the extinction of diseases. Finally, numerical simulations are introduced to illustrate our theoretical results.


Symmetry ◽  
2020 ◽  
Vol 12 (5) ◽  
pp. 745 ◽  
Author(s):  
Tongqian Zhang ◽  
Tingting Ding ◽  
Ning Gao ◽  
Yi Song

In this paper, a stochastic SIRC epidemic model for Influenza A is proposed and investigated. First, we prove that the system exists a unique global positive solution. Second, the extinction of the disease is explored and the sufficient conditions for extinction of the disease are derived. And then the existence of a unique ergodic stationary distribution of the positive solutions for the system is discussed by constructing stochastic Lyapunov function. Furthermore, numerical simulations are employed to illustrate the theoretical results. Finally, we give some further discussions about the system.


Filomat ◽  
2021 ◽  
Vol 35 (2) ◽  
pp. 535-549
Author(s):  
Hong-Wen Hui ◽  
Lin-Fei Nie

Considering various factors are stochastic rather than deterministic in the evolution of populations growth, in this paper, we propose a single predator multiple prey stochastic model with seasonal variation. By using the method of solving an explicit solution, the existence of global positive solution of this model are obtained. The method is more convenient than Lyapunov analysis method for some population models. Moreover, the stochastically ultimate boundedness are considered by using the comparison theorem of stochastic differential equation. Further, some sufficient conditions for the extinction and strong persistence in the mean of populations are discussed, respectively. In addition, by constructing some suitable Lyapunov functions, we show that this model admits at least one periodic solution. Finally, numerical simulations clearly illustrate the main theoretical results and the effects of white noise and seasonal variation for the persistence and extinction of populations.


2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Wanying Shi ◽  
Youlin Huang ◽  
Chunjin Wei ◽  
Shuwen Zhang

In this paper, we study a stochastic Holling-type II predator-prey model with stage structure and refuge for prey. Firstly, the existence and uniqueness of the global positive solution of the system are proved. Secondly, the stochastically ultimate boundedness of the solution is discussed. Next, sufficient conditions for the existence and uniqueness of ergodic stationary distribution of the positive solution are established by constructing a suitable stochastic Lyapunov function. Then, sufficient conditions for the extinction of predator population in two cases and that of prey population in one case are obtained. Finally, some numerical simulations are presented to verify our results.


2015 ◽  
Vol 2015 ◽  
pp. 1-9
Author(s):  
Huili Xiang ◽  
Zhuang Fang ◽  
Zuxiong Li ◽  
Zhijun Liu

A competitive system subject to environmental noise is established. By using the theory of stochastic differential equations and Lyapunov function, sufficient conditions for the existence, uniqueness, stochastic boundedness, and global attraction of the positive solution of the above system are established, respectively. An example together with its corresponding numerical simulations is presented to confirm our analytical results.


2015 ◽  
Vol 26 (08) ◽  
pp. 1550095 ◽  
Author(s):  
Yan Dong ◽  
Junwei Chen

In this paper, the finite-time outer synchronization between two complex dynamical networks with on–off coupling is investigated. By using suitable on–off controllers, sufficient conditions for finite-time outer synchronization are derived based on the Lyapunov function and the finite-time differential inequality method. The theoretical results imply that the two networks will achieve finite-time outer synchronization for fixed on–off rate if the control coupling strength is large enough. Numerical simulations are given to demonstrate the effectiveness of the theoretical results.


2017 ◽  
Vol 2017 ◽  
pp. 1-9 ◽  
Author(s):  
Weiwei Zhang ◽  
Jinde Cao ◽  
Ahmed Alsaedi ◽  
Fuad E. Alsaadi

Finite-time synchronization for a class of fractional-order delayed neural networks with fractional order α, 0<α≤1/2 and 1/2<α<1, is investigated in this paper. Through the use of Hölder inequality, generalized Bernoulli inequality, and inequality skills, two sufficient conditions are considered to ensure synchronization of fractional-order delayed neural networks in a finite-time interval. Numerical example is given to verify the feasibility of the theoretical results.


2019 ◽  
Vol 37 (3) ◽  
pp. 814-830
Author(s):  
Yongbao Wu ◽  
Wenxue Li ◽  
Jiqiang Feng

Abstract In this paper, the finite-time stabilization of stochastic coupled systems on networks (SCSNs) is studied. Different from previous research methods, the method used in this paper combines Lyapunov method with graph theory, and some novel sufficient conditions are obtained to ensure finite-time stability for SCSNs. Meanwhile, the convergence time is closely related to topological structure in networks. As a practical application in physics, we address a concrete finite-time stabilization problem of stochastic coupled oscillators through our main results. In addition, a numerical example is presented to illustrate the effectiveness and feasibility of the theoretical results.


2020 ◽  
Vol 2020 ◽  
pp. 1-17
Author(s):  
Junmei Liu ◽  
Yonggang Ma

This paper discusses the asymptotic behavior of a class of three-species stochastic model with regime switching. Using the Lyapunov function, we first obtain sufficient conditions for extinction and average time persistence. Then, we prove sufficient conditions for the existence of stationary distributions of populations, and they are ergodic. Numerical simulations are carried out to support our theoretical results.


Sign in / Sign up

Export Citation Format

Share Document