scholarly journals Capacity ofκ-μShadowed Fading Channels

2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Celia García-Corrales ◽  
Francisco J. Cañete ◽  
José F. Paris

The ergodic capacity of fading channels modeled with aκ-μshadowed distribution is investigated to derive closed-form expressions. Theκ-μshadowed distribution is of particular interest because it contains, as special cases, other classical ones like one-side Gaussian, Rayleigh, Rician, Nakagami-m,κ-μ, and Rician shadowed distributions. The paper discusses the physical meaning of the distribution parameter variations and also their impact on the channel capacity. These results can be used to study the behavior of different channels like the ones in underwater acoustic communications, land mobile satellite systems, body centric communications, and other wireless communication applications. The analytical closed-form expression results are validated with numerical simulations.

2004 ◽  
Vol 40 (19) ◽  
pp. 1192 ◽  
Author(s):  
J. Pérez ◽  
J. Ibáñez ◽  
L. Vielva ◽  
I. Santamaría

Symmetry ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 2056
Author(s):  
Robert Reynolds ◽  
Allan Stauffer

A closed form expression for a triple integral not previously considered is derived, in terms of the Lerch function. Almost all Lerch functions have an asymmetrical zero-distribution. The kernel of the integral involves the product of the logarithmic, exponential, quotient radical, and polynomial functions. Special cases are derived in terms of fundamental constants; results are summarized in a table. All results in this work are new.


2012 ◽  
Vol 2012 ◽  
pp. 1-7 ◽  
Author(s):  
Xiangbin Yu ◽  
Xiaoshuai Liu ◽  
Yuyu Xin ◽  
Ming Chen ◽  
Yun Rui

The downlink performance and capacity of distributed antenna systems (DASs) with multiple receive antennas are investigated in multi-input multi-output (MIMO) fading and multicell environment. Based on the moment generating function and performance analysis, an exact closed-form expression of DAS ergodic capacity is derived, and it includes the existing capacity expression as a special case. Moreover, a simple closed-form approximate expression of ergodic capacity is also derived by using the Taylor series, and it has the performance result close to the exact expression. Besides, the outage capacity of DAS is analyzed, and an exact closed-form expression of outage capacity probability is derived. All these expressions can provide good theoretical performance evaluation for DAS. Simulation results corroborate our theoretical analysis.


2014 ◽  
Vol 2014 ◽  
pp. 1-7
Author(s):  
Zongsheng Zhang ◽  
Jinlong Wang ◽  
Qihui Wu ◽  
Xurong Pi

The outage performance with best relay selection is proposed for cognitive relay networks with multiple primary users in independent nonidentical distributed Nakagami-m fading channels. Specifically, we take the interference temperature and fading severity into consideration. Exact closed-form expression of outage probability is derived. Based on the exact closed-form expression, we can evaluate the impact of interference temperature, fading severity, number of relays, and number of primary users on the secondary network. Finally, the effects of fading severity, number of relays, number of primary users, and interference temperature on the system performance are examined through some representative numerical plots, and the Monte Carlo results match perfectly with theory results which validates our theory analysis.


Entropy ◽  
2019 ◽  
Vol 21 (10) ◽  
pp. 998 ◽  
Author(s):  
Sheng-Hong Lin ◽  
Rong-Rong Lu ◽  
Xian-Tao Fu ◽  
An-Ling Tong ◽  
Jin-Yuan Wang

In this paper, the physical layer security over the M-distributed fading channel is investigated. Initially, an exact expression of secrecy outage probability (SOP) is derived, which has an integral term. To get a closed-form expression, a lower bound of SOP is obtained. After that, the exact expression for the probability of strictly positive secrecy capacity (SPSC) is derived, which is in closed-form. Finally, an exact expression of ergodic secrecy capacity (ESC) is derived, which has two integral terms. To reduce its computational complexity, a closed-from expression for the lower bound of ESC is obtained. As special cases of M-distributed fading channels, the secure performance of the K, exponential, and Gamma-Gamma fading channels are also derived, respectively. Numerical results show that all theoretical results match well with Monte-Carlo simulation results. Specifically, when the average signal-to-noise ratio of main channel is larger than 40 dB, the relative errors for the lower bound of SOP, the probability of SPSC, and the lower bound of ESC are less than 1.936%, 6.753%, and 1.845%, respectively. This indicates that the derived theoretical expressions can be directly used to evaluate system performance without time-consuming simulations. Moreover, the derived results regarding parameters that influence the secrecy performance will enable system designers to quickly determine the optimal available parameter choices when facing different security risks.


Sign in / Sign up

Export Citation Format

Share Document