scholarly journals Detecting Genetic Associations betweenATG5and Lupus Nephritis bytrans-eQTL

2015 ◽  
Vol 2015 ◽  
pp. 1-7 ◽  
Author(s):  
Yue-miao Zhang ◽  
Fa-juan Cheng ◽  
Xu-jie Zhou ◽  
Yuan-yuan Qi ◽  
Ping Hou ◽  
...  

Objectives. Numerous loci were identified to perturb gene expression intrans. As elevatedATG5expression was observed in systemic lupus erythematosus (SLE), the study was conducted to analyze the genome-wide genetic regulatory mechanisms associated withATG5expression in a Chinese population with lupus nephritis (LN).Methods. The online expression quantitative trait loci database was searched fortrans-expression single nucleotide polymorphisms (trans-eSNPs) ofATG5. Taggingtrans-eSNPs were genotyped by a custom-made genotyping chip in 280 patients and 199 controls. For positive findings, clinical information and bioinformation analyses were performed.Results. Fourtrans-eSNPs were observed to be associated with susceptibility to LN (P< 0.05), including ANKRD50 rs17008504, AGA rs2271100, PAK7 rs6056923, and TET2 rs1391441, while seven othertrans-eSNPs showed marginal significant associations (0.05 <P< 0.1). Correlations between thetrans-eSNPs andATG5expression and different expression levels ofATG5in SLE patients and controls were validated, and their regulatory effects were annotated. However, no significant associations were observed between different genotypes oftrans-eSNPs and severity or outcome of the patients.Conclusion. Using the new systemic genetics approach, we identified 10 loci associated with susceptibility to LN potentially, which may be complementary to future pathway based genetic studies.

2016 ◽  
Vol 43 (6) ◽  
pp. 1045-1049 ◽  
Author(s):  
Kwangwoo Kim ◽  
So-Young Bang ◽  
Young Bin Joo ◽  
Taehyeung Kim ◽  
Hye-Soon Lee ◽  
...  

Objective.Cyclophosphamide (CYC) is an immunosuppressant drug widely used to treat various diseases including lupus nephritis, but its efficacy highly varies from individual to individual. This pharmacogenomics association study searched for genetic variations associated with CYC efficacy.Methods.Genome-wide association scan was performed for 109 Korean patients with systemic lupus erythematosus with lupus nephritis (classes III–V) who received intravenous CYC induction therapy. Genetic differences between responders and nonresponders were examined using Cochran–Armitage trend tests, and genotype imputation was used for defining the association locus.Results.Genetic polymorphisms in the Fcγ receptor gene (FCGR) cluster at human chromosome 1q23, previously associated with lupus nephritis susceptibility, were associated with the response to CYC treatment for lupus nephritis. Significant response association was found for 3 perfectly correlated (r2 = 1) single-nucleotide polymorphisms (SNP): rs6697139, rs10917686, and rs10917688, located between the FCGR2B and FCRLA genes (p = 3.4 × 10−8). Carriage of the minor alleles in these SNP was found only in nonresponders (31%) and none in responders (0%).Conclusion.This first genome-wide association approach for CYC response yielded a robust profile of genetic associations including large-effect SNP in the FCGR2B-FCRLA locus, which may provide better insights to CYC metabolism and efficacy.


2016 ◽  
Author(s):  
Mark Barash ◽  
Philipp E. Bayer ◽  
Angela van Daal

AbstractDespite intensive research on genetics of the craniofacial morphology using animal models and human craniofacial syndromes, the genetic variation that underpins normal human facial appearance is still largely elusive. Recent development of novel digital methods for capturing the complexity of craniofacial morphology in conjunction with high-throughput genotyping methods, show great promise for unravelling the genetic basis of such a complex trait.As a part of our efforts on detecting genomic variants affecting normal craniofacial appearance, we have implemented a candidate gene approach by selecting 1,201 single nucleotide polymorphisms (SNPs) and 4,732 tag SNPs in over 170 candidate genes and intergenic regions. We used 3-dimentional (3D) facial scans and direct cranial measurements of 587 volunteers to calculate 104 craniofacial phenotypes. Following genotyping by massively parallel sequencing, genetic associations between 2,332 genetic markers and 104 craniofacial phenotypes were tested.An application of a Bonferroni–corrected genome–wide significance threshold produced significant associations between five craniofacial traits and six SNPs. Specifically, associations of nasal width with rs8035124 (15q26.1), cephalic index with rs16830498 (2q23.3), nasal index with rs37369 (5q13.2), transverse nasal prominence angle with rs59037879 (10p11.23) and rs10512572 (17q24.3), and principal component explaining 73.3% of all the craniofacial phenotypes, with rs37369 (5p13.2) and rs390345 (14q31.3) were observed.Due to over-conservative nature of the Bonferroni correction, we also report all the associations that reached the traditional genome-wide p-value threshold (<5.00E-08) as suggestive. Based on the genome-wide threshold, 8 craniofacial phenotypes demonstrated significant associations with 34 intergenic and extragenic SNPs. The majority of associations are novel, except PAX3 and COL11A1 genes, which were previously reported to affect normal craniofacial variation.This study identified the largest number of genetic variants associated with normal variation of craniofacial morphology to date by using a candidate gene approach, including confirmation of the two previously reported genes. These results enhance our understanding of the genetics that determines normal variation in craniofacial morphology and will be of particular value in medical and forensic fields.Author SummaryThere is a remarkable variety of human facial appearances, almost exclusively the result of genetic differences, as exemplified by the striking resemblance of identical twins. However, the genes and specific genetic variants that affect the size and shape of the cranium and the soft facial tissue features are largely unknown. Numerous studies on animal models and human craniofacial disorders have identified a large number of genes, which may regulate normal craniofacial embryonic development.In this study we implemented a targeted candidate gene approach to select more than 1,200 polymorphisms in over 170 genes that are likely to be involved in craniofacial development and morphology. These markers were genotyped in 587 DNA samples using massively parallel sequencing and analysed for association with 104 traits generated from 3-dimensional facial images and direct craniofacial measurements. Genetic associations (p-values<5.00E-08) were observed between 8 craniofacial traits and 34 single nucleotide polymorphisms (SNPs), including two previously described genes and 26 novel candidate genes and intergenic regions. This comprehensive candidate gene study has uncovered the largest number of novel genetic variants affecting normal facial appearance to date. These results will appreciably extend our understanding of the normal and abnormal embryonic development and impact our ability to predict the appearance of an individual from a DNA sample in forensic criminal investigations and missing person cases.


2020 ◽  
Vol 6 (35) ◽  
pp. eabb4591
Author(s):  
Yonit Tsatskis ◽  
Robyn Rosenfeld ◽  
Joel D. Pearson ◽  
Curtis Boswell ◽  
Yi Qu ◽  
...  

Human genome-wide association studies have linked single-nucleotide polymorphisms (SNPs) in NEMP1 (nuclear envelope membrane protein 1) with early menopause; however, it is unclear whether NEMP1 has any role in fertility. We show that whole-animal loss of NEMP1 homologs in Drosophila, Caenorhabditis elegans, zebrafish, and mice leads to sterility or early loss of fertility. Loss of Nemp leads to nuclear shaping defects, most prominently in the germ line. Biochemical, biophysical, and genetic studies reveal that NEMP proteins support the mechanical stiffness of the germline nuclear envelope via formation of a NEMP-EMERIN complex. These data indicate that the germline nuclear envelope has specialized mechanical properties and that NEMP proteins play essential and conserved roles in fertility.


2013 ◽  
Vol 2013 ◽  
pp. 1-6 ◽  
Author(s):  
Xu-jie Zhou ◽  
Fa-juan Cheng ◽  
Yuan-yuan Qi ◽  
Ming-hui Zhao ◽  
Hong Zhang

A recent phenotypic association study of genetic susceptibility loci in SLE suggested thatTNFSF4gene might be useful to predict renal disorder in lupus patients. To replicate the association, two single-nucleotide polymorphisms (SNPs: rs2205960 and rs10489265) were genotyped in 814 SLE patients. Correlations between genotypes andTNFSF4expression were determined. The stainings ofTNFSF4in renal biopsy specimens were checked by immunohistochemistry. The SNPs ofTNFSF4were associated with renal involvement in lupus patients from the Chinese population (Pvalues for rs2205960 and rs10489265 were 0.014 and 0.005 in additive model, resp.). An association between risk genotypes and low C3 levels was also observed (P=0.034). Functional prediction suggested that rs2205960 had a regulatory feature. The risk alleles seemingly correlated with lowerTNFSF4expression. StrongTNFSF4expression was detected in lymph nodes and “apparently normal” paratumor renal biopsy but not in renal biopsies from lupus nephritis. In genome-wide expression data,TNFSF4was also observed to be downregulated in LN in both glomeruli and tubulointerstitium from kidney biopsies. However, the associations were marginally significant. Our data firstly replicated the association ofTNFSF4with renal disorder in SLE patients in the Chinese population, which supported thatTNFSF4may act as a marker of lupus nephritis. The detailed mechanisms of its role in pathogenesis will still be further needed.


2014 ◽  
Vol 17 (4) ◽  
Author(s):  
Raymond K. Walters ◽  
Charles Laurin ◽  
Gitta H. Lubke

Epistasis is a growing area of research in genome-wide studies, but the differences between alternative definitions of epistasis remain a source of confusion for many researchers. One problem is that models for epistasis are presented in a number of formats, some of which have difficult-to-interpret parameters. In addition, the relation between the different models is rarely explained. Existing software for testing epistatic interactions between single-nucleotide polymorphisms (SNPs) does not provide the flexibility to compare the available model parameterizations. For that reason we have developed an R package for investigating epistatic and penetrance models, EpiPen, to aid users who wish to easily compare, interpret, and utilize models for two-locus epistatic interactions. EpiPen facilitates research on SNP-SNP interactions by allowing the R user to easily convert between common parametric forms for two-locus interactions, generate data for simulation studies, and perform power analyses for the selected model with a continuous or dichotomous phenotype. The usefulness of the package for model interpretation and power analysis is illustrated using data on rheumatoid arthritis.


Genes ◽  
2021 ◽  
Vol 12 (5) ◽  
pp. 686
Author(s):  
Alireza Nazarian ◽  
Alexander M. Kulminski

Almost all complex disorders have manifested epidemiological and clinical sex disparities which might partially arise from sex-specific genetic mechanisms. Addressing such differences can be important from a precision medicine perspective which aims to make medical interventions more personalized and effective. We investigated sex-specific genetic associations with colorectal (CRCa) and lung (LCa) cancers using genome-wide single-nucleotide polymorphisms (SNPs) data from three independent datasets. The genome-wide association analyses revealed that 33 SNPs were associated with CRCa/LCa at P < 5.0 × 10−6 neither males or females. Of these, 26 SNPs had sex-specific effects as their effect sizes were statistically different between the two sexes at a Bonferroni-adjusted significance level of 0.0015. None had proxy SNPs within their ±1 Mb regions and the closest genes to 32 SNPs were not previously associated with the corresponding cancers. The pathway enrichment analyses demonstrated the associations of 35 pathways with CRCa or LCa which were mostly implicated in immune system responses, cell cycle, and chromosome stability. The significant pathways were mostly enriched in either males or females. Our findings provided novel insights into the potential sex-specific genetic heterogeneity of CRCa and LCa at SNP and pathway levels.


Sign in / Sign up

Export Citation Format

Share Document