scholarly journals Distributed Node-to-Node Consensus of Multiagent Systems with Delayed Nonlinear Dynamics and Intermittent Communications

2015 ◽  
Vol 2015 ◽  
pp. 1-10
Author(s):  
Kexin Jia ◽  
Hongjie Li ◽  
Wenqiang Zheng ◽  
Qinyou Mou ◽  
Jiajun Shao

The paper is concerned with the problem of distributed node-to-node consensus of multiagent systems with delayed nonlinear dynamics and communication constraints. A new kind of consensus protocol based only on the intermittent measurements of neighboring agents is proposed to make each follower track the corresponding leader asymptotically. Based on the Lyapunov stability theory andM-matrix theory, some novel and simple criteria are derived for node-to-node consensus of multiagent systems. It is shown that consensus can be reached if the communication time duration is larger than the corresponding threshold value. Finally, a numerical example is provided to demonstrate the effectiveness of the obtained theoretical results.

2018 ◽  
Vol 2018 ◽  
pp. 1-8 ◽  
Author(s):  
Zhiqiang Li ◽  
Chengjie Xu ◽  
Chen Liu ◽  
Haichuan Xu

This paper investigates robust consensus for nonlinear multiagent systems with uncertainty and disturbance. The consensus evolution behavior is studied under general consensus protocol when each node is disturbed by the relative states between the node and its neighbors. At first, the robust consensus condition is obtained and the convergency analysis is given by using Lyapunov stability theory and matrix theory. Then, the practical consensus is investigated and the bound of the error states is presented. Finally, two numerical simulation examples are given to illustrate the proposed theoretical results.


2014 ◽  
Vol 2014 ◽  
pp. 1-6
Author(s):  
Wei Qian ◽  
Lei Wang

This paper addresses the global consensus of nonlinear multiagent systems with asymmetrically coupled identical agents. By employing a Lyapunov function and graph theory, a sufficient condition is presented for the global exponential consensus of the multiagent system. The analytical result shows that, for a weakly connected communication graph, the algebraic connectivity of a redefined symmetric matrix associated with the directed graph is used to evaluate the global consensus of the multiagent system with nonlinear dynamics under the common linear consensus protocol. The presented condition is quite simple and easily verified, which can be effectively used to design consensus protocols of various weighted and directed communications. A numerical simulation is also given to show the effectiveness of the analytical result.


2014 ◽  
Vol 2014 ◽  
pp. 1-6 ◽  
Author(s):  
Qian Cao ◽  
Y. D. Song ◽  
Lei Wang ◽  
Feng Yang

This paper investigates the consensus problem for multiagent systems with nonlinear dynamics and time delays. A distributed adaptive consensus protocol is proposed in which the time delays are explicitly included in the adaptive algorithm. It is shown that the resultant closed loop system involves doubly larger time delays, making the stability analysis nontrivial. Stability condition on maximum tolerable time delay is established and controlled by the proposed two-hop adaptive algorithm. The explicit expression of the delay margin is derived and analyzed in the frequency domain. Both the agent state errors and the estimation parameter errors converge to zero. A simulation example is illustrated to verify the theory results.


2018 ◽  
Vol 2018 ◽  
pp. 1-13 ◽  
Author(s):  
Ali Mustafa ◽  
Muhammad Najam ul Islam ◽  
Salman Ahmed ◽  
Muhammad Ahsan Tufail

Nearly all applications in multiagent systems demand precision, robustness, consistency, and rapid convergence in designing of distributed consensus algorithms. Keeping this thing in our sight, this research suggests a robust consensus protocol for distributed multiagent networks, continuing asynchronous communications, where agent’s states values are updated at diverse interval of time. This paper presents an asynchronous communication for both reliable and unreliable network topologies. The primary goal is to delineate local control inputs to attain time synchronization by processing the update information received by the agents associated in a communication topology. Additionally in order to accomplish the robust convergence, modelling of convergence analysis is conceded by commissioning the basic principles of graph and matrix theory alongside the suitable lemmas. Moreover, statistical examples presenting four diverse scenarios are provided in the end; produced results are the recognisable indicator to authenticate the robust effectiveness of the proposed algorithm. Likewise, a simulation comparison of the projected algorithm with the other existing approaches is conducted, considering different performance parameters are being carried out to support our claim.


2013 ◽  
Vol 2013 ◽  
pp. 1-7 ◽  
Author(s):  
Wen-Min Zhou ◽  
Jiang-Wen Xiao

This paper is concerned with the consensus problem of general linear discrete-time multiagent systems (MASs) with random packet dropout that happens during information exchange between agents. The packet dropout phenomenon is characterized as being a Bernoulli random process. A distributed consensus protocol with weighted graph is proposed to address the packet dropout phenomenon. Through introducing a new disagreement vector, a new framework is established to solve the consensus problem. Based on the control theory, the perturbation argument, and the matrix theory, the necessary and sufficient condition for MASs to reach mean-square consensus is derived in terms of stability of an array of low-dimensional matrices. Moreover, mean-square consensusable conditions with regard to network topology and agent dynamic structure are also provided. Finally, the effectiveness of the theoretical results is demonstrated through an illustrative example.


2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Qi Lei ◽  
Ying Luo

An event-triggered-based external consensus control protocol with delay compensation for networked multiagent systems (NMASs) with nonlinear dynamics and network-induced delays is discussed in this paper. An RBF-ARX modelling method is adopted to approximate a nonlinear system. By utilizing the RBF-ARX model, the locally linearized time series model can be obtained to describe the behaviour of agents with nonlinear characteristics. An event-triggered control protocol with communication delay compensation is proposed to reduce the effects of network-induced delays and the times of the agent’s control update and communication between others by applying the idea of a prediction strategy. The event-triggered mechanism for each agent only depends on the deviation between its own output and the delay-compensated output of neighboring agents. Then, a distributed event-triggered-based and delay-compensated external consensus control protocol is given. Under this proposed control protocol, both the consensus and stability of the system can be proved. Finally, a numerical simulation is performed to verify the availability of our results.


Complexity ◽  
2019 ◽  
Vol 2019 ◽  
pp. 1-13 ◽  
Author(s):  
Xingcheng Pu ◽  
Chaowen Xiong ◽  
Lianghao Ji ◽  
Longlong Zhao

In this paper, the weighted couple-group consensus of continuous-time heterogeneous multiagent systems with input and communication time delay is investigated. A novel weighted couple-group consensus protocol based on cooperation and competition interaction is designed, which can relax the in-degree balance condition. By using graph theory, general Nyquist criterion and Gerschgorin disc theorem, the time delay upper limit that the system may allow is obtained. The conclusions indicate that there is no relationship between weighted couple-group consensus and communication time delay. When the agents input time delay, the coupling weight between the agents, and the systems control parameters are satisfied, the multiagent system can converge to any given weighted coupling group consistent state. The experimental simulation results verify the correctness of the conclusion.


2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Weixun Li ◽  
Liqiong Zhang

In this paper, a neighbour-based control algorithm of group consensus is designed for a class of hybrid-based heterogeneous multiagent systems with communication time delay. We consider the statics leaders and active leaders, respectively. The original systems are transformed into new error systems by transformation. On the basis of the systems, applying Lyapunov stability theory and adopting the linear matrix inequality method, sufficient conditions which guarantee the heterogeneous multiagent systems stability are obtained. To illustrate the validity of theoretical results, some numerical simulations are given at the end of the paper.


2019 ◽  
Vol 2019 ◽  
pp. 1-9
Author(s):  
Anding Dai ◽  
Yicheng Liu ◽  
Dongyun Yi ◽  
Peiying Xiong

This paper investigates the stability of a class of swarm model with nonlinear dynamics and aperiodically intermittent communication. Different from previous works, it assumes that the agents obtain information from the neighbors at a series of aperiodically time intervals. Moreover, nonlinear dynamics and time delay are considered. It finds that all agents in a swarm can reach cohesion within a finite time under discontinuous communication, where the upper bounds of cohesion depend on the parameters of the swarm model and communication time. A numerical example is given to demonstrate the validity of the theoretical results.


2015 ◽  
Vol 2015 ◽  
pp. 1-7
Author(s):  
He Jiang ◽  
Dongsheng Yang

This paper deals with the output consensus regulation problem for discrete-time multiagent systems with state-unmeasurable agents and external disturbances under directed communication network topologies. Firstly, the mathematical model for the output consensus problem of discrete-time multiagent systems is deduced and formulated via making matrix transformation. Then, based on state observers, a novel output consensus protocol with dynamic compensator which is used as observer for the exosystem is proposed to solve this problem. Some knowledge of matrix theory and graph theory is introduced to design protocol parameters and the convergence of output consensus errors is proved. Finally, a numerical simulation example is shown to verify the effectiveness of the proposed protocol design.


Sign in / Sign up

Export Citation Format

Share Document