scholarly journals Weighted Couple-Group Consensus Analysis of Heterogeneous Multiagent Systems with Cooperative-Competitive Interactions and Time Delays

Complexity ◽  
2019 ◽  
Vol 2019 ◽  
pp. 1-13 ◽  
Author(s):  
Xingcheng Pu ◽  
Chaowen Xiong ◽  
Lianghao Ji ◽  
Longlong Zhao

In this paper, the weighted couple-group consensus of continuous-time heterogeneous multiagent systems with input and communication time delay is investigated. A novel weighted couple-group consensus protocol based on cooperation and competition interaction is designed, which can relax the in-degree balance condition. By using graph theory, general Nyquist criterion and Gerschgorin disc theorem, the time delay upper limit that the system may allow is obtained. The conclusions indicate that there is no relationship between weighted couple-group consensus and communication time delay. When the agents input time delay, the coupling weight between the agents, and the systems control parameters are satisfied, the multiagent system can converge to any given weighted coupling group consistent state. The experimental simulation results verify the correctness of the conclusion.


2014 ◽  
Vol 2014 ◽  
pp. 1-10
Author(s):  
Fangcui Jiang

This paper focuses on the consensus problem for high-order multiagent systems (MAS) with directed network and asymmetric time-varying time-delays. It is proved that the high-order multiagent system can reach consensus when the network topology contains a spanning tree and time-delay is bounded. The main contribution of this paper is that a Lyapunov-like design framework for the explicit selection of protocol parameters is provided. The Lyapunov-like design guarantees the robust consensus of the high-order multiagent system with respect to asymmetric time-delays and is independent of the exact knowledge of the topology when the communication linkages among agents are undirected and connected.



Complexity ◽  
2018 ◽  
Vol 2018 ◽  
pp. 1-11 ◽  
Author(s):  
Lianghao Ji ◽  
Yue Zhang ◽  
Yiliu Jiang

This paper discusses the couple-group consensus issues of a class of heterogeneous multiagent systems containing first-order and second-order dynamic agents under the influence of both input and communication delays. In distinction to the existing works, a novel distributed coordination control protocol is proposed which is not only on the foundation of the competitive interaction between the agents but also has no virtual velocity estimation in the first-order dynamics. Furthermore, without the restrictive assumptions existing commonly in the related works, several sufficient algebraic criteria are established for the heterogeneous systems to realize couple-group consensus asymptotically. The obtained conclusions show that the achievement of the systems’ couple-group consensus intimately relates to the coupling weights between the agents, the systems control parameters, and the input time delays of the agents, while communication time delays between the agents are irrelevant to it. Finally, several simulations are illustrated to verify the effectiveness of the obtained theoretical results.



2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
Yi-Jie Sun ◽  
Guo-liang Zhang ◽  
Jing Zeng

The consensus problem of heterogeneous multiagent systems composed of first-order and second-order agent is investigated. A linear consensus protocol is proposed. Based on frequency domain method, the sufficient conditions of achieving consensus are obtained. If communication topology contains spanning tree and some conditions can be satisfied on control gains, consensus can be achieved. Then, a linear consensus protocol with time delay is proposed. In this case, consensus is dependent only on system coupling strength, each agent input time delay, but independent of communication delay. Finally, numerical simulations are provided to illustrate the effectiveness of the theoretical result.



2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Weixun Li ◽  
Liqiong Zhang

In this paper, a neighbour-based control algorithm of group consensus is designed for a class of hybrid-based heterogeneous multiagent systems with communication time delay. We consider the statics leaders and active leaders, respectively. The original systems are transformed into new error systems by transformation. On the basis of the systems, applying Lyapunov stability theory and adopting the linear matrix inequality method, sufficient conditions which guarantee the heterogeneous multiagent systems stability are obtained. To illustrate the validity of theoretical results, some numerical simulations are given at the end of the paper.



2014 ◽  
Vol 2014 ◽  
pp. 1-6
Author(s):  
Wei Qian ◽  
Lei Wang

This paper addresses the global consensus of nonlinear multiagent systems with asymmetrically coupled identical agents. By employing a Lyapunov function and graph theory, a sufficient condition is presented for the global exponential consensus of the multiagent system. The analytical result shows that, for a weakly connected communication graph, the algebraic connectivity of a redefined symmetric matrix associated with the directed graph is used to evaluate the global consensus of the multiagent system with nonlinear dynamics under the common linear consensus protocol. The presented condition is quite simple and easily verified, which can be effectively used to design consensus protocols of various weighted and directed communications. A numerical simulation is also given to show the effectiveness of the analytical result.



2014 ◽  
Vol 2014 ◽  
pp. 1-7
Author(s):  
Bo Liu ◽  
Li Wang ◽  
Dehui Sun ◽  
Xinmao Zhu

This paper investigates the consensus problem of multiagent systems with directed topologies. Different from the literatures, a new method, the Laplace transform, to study the consensus of multiagent systems with directed topology and communication time delay is proposed. The accurate state of the consensus center and the upper bound of the communication delay to make the agents reach consensus are given. It is proved that all the agents could aggregate and eventually form a cohesive cluster in finite time under certain conditions, and the consensus center is only determined by the initial states and the communication configuration among the agents. Finally, simulations are given to illustrate the theoretical results.



Kybernetes ◽  
2014 ◽  
Vol 43 (8) ◽  
pp. 1248-1261 ◽  
Author(s):  
Bin Qi ◽  
Xuyang Lou ◽  
Baotong Cui

Purpose – The purpose of this paper is to discuss the impacts of the communication time-delays to the distributed containment control of the second-order multi-agent systems with directed topology. Design/methodology/approach – A basic theoretical analysis is first carried out for the containment control of the second-order multi-agent systems under directed topology without communication time-delay and a sufficient condition is proposed for the achievement of containment control. Based on the above result and frequency-domain analysis method, a sufficient condition is also derived for the achievement of containment control of the second-order multi-agent systems under directed topology with communication time-delays. Finally, simulation results are presented to support the effectiveness of the theoretical results. Findings – For the achievement of containment control of the second-order multi-agent systems under directed topology with communication time-delay, the control gain in the control protocols is completely dependent on the communication topology structure and the maximum of time-delay in the control protocols is dependent on the given control gain and communication topology structure. Originality/value – The paper investigates the containment control of the second-order multi-agent systems under directed topology with communication time-delays and presents a sufficient conditions for the achievement of containment control. The results and approach proposed in the paper may benefit interesting researchers.



Author(s):  
J. Scot Hart ◽  
Gu¨nter Niemeyer

Wave variable controllers maintain passive communication across time delays in telerobotics. As passive elements, wave variable controllers interact well with other passive elements, such as P.D. controllers and masses, and use a combination of force and velocity signals to apply force feedback. Currently we are exploring the use of wave variable controllers with large non-backdrivable industrial-type slave devices where dynamics are dominated by inertial and frictional forces. The objective is to integrate force sensor measurements into wave variable controllers to provide low frequency force feedback and hide the slave’s friction and inertia from the user in the presence of a communication time delay. This paper presents and uses a wave variable based approach to design force control. The resulting wave variable based force controller is converted to power variables and shown to be similar to traditional force controllers. A 1-DOF telerobotic system is used to experimentally show the wave variable based force control combines with the enhanced stability properties of the wave communication channel to produce robust slave side force control. The resulting system is better able to maintain force control with rigid environments then a traditional controller both with and without communication time delay.



Sign in / Sign up

Export Citation Format

Share Document