scholarly journals Sparse Approximation for Nonrigid Structure from Motion

2015 ◽  
Vol 2015 ◽  
pp. 1-8 ◽  
Author(s):  
Yaming Wang ◽  
Xiaomeng Yan ◽  
Junbao Zheng ◽  
Mingfeng Jiang

This paper introduces applying a novel sparse approximation method into solving nonrigid structure from motion problem in trajectory space. Instead of generating a truncated traditional trajectory basis, this method uses an atom dictionary which includes a set of overcomplete bases to estimate the real shape of the deformable object. Yet, it still runs reliably and can get an optimal result. On the other hand, it does not need to consider the size of predefined trajectory bases; that is to say, there is no need to truncate the trajectory basis. The mentioned method is very easy to implement and the only trouble which needs to be solved is anL1-regularized least squares problem. This paper not only presents a new thought, but also gives out a simple but effective solution for the nonrigid structure from motion problem.

2020 ◽  
Author(s):  
Abimael Francisco do Nascimento

The general objective of this study is to analyze the postulate of the ethics of otherness as the first philosophy, presented by Emmanuel Levinas. It is a proposal that runs through Levinas' thinking from his theoretical foundations, to his philosophical criticism. Levinas' thought presents itself as a new thought, as a critique of ontology and transcendental philosophy. For him, the concern with knowledge and with being made the other to be forgotten, placing the other in totality. Levinas proposes the ethics of otherness as sensitivity to the other. The subject says here I am, making myself responsible for the other in an infinite way, in a transcendence without return to myself, becoming hostage to the other, as an irrefutable responsibility. The idea of the infinite, present in the face of the other, points to a responsibility whoever more assumes himself, the more one is responsible, until the substitution by other.


1988 ◽  
Vol 119 (1) ◽  
pp. 111-116 ◽  
Author(s):  
G. J. King ◽  
R. Rajamahendran

ABSTRACT Plasma progesterone concentrations were compared in cyclic (n = 12), pregnant (n =12), oestradiol-induced pseudopregnant (n=12) and hysterectomized gilts (n=10) between days 8 and 27 after oestrus. The results were grouped into periods covering days 8–13, 14–20 and 21–27 and analysed by least-squares analysis of variance. Plasma progesterone concentrations were significantly (P<0·001) higher in hysterectomized compared with other groups between days 8 and 13. Progesterone concentrations declined rapidly after day 14 in cyclic females and gradually in the other groups. Throughout the third and fourth weeks the mean progesterone concentrations for hysterectomized animals were consistently higher than for pseudopregnant animals (P<0·05). The pregnant group means were below but not significantly different from the hysterectomized means in both of the last two periods. The greater progesterone concentrations in hysterectomized gilts indicated that secretion is high without any conceptus-produced or -mediated luteotrophin, and corpora lutea in cyclic, pregnant or pseudopregnant gilts may never reach full secretory potential. J. Endocr. (1988) 119, 111–116


2020 ◽  
Vol 3 (1) ◽  
pp. 570-583
Author(s):  
Waldemar Czajkowski

AbstractA paradox of our time is identified: on the one hand – the development of one global system (ecological, technological and social), on the other hand – the still increasing “balkanization” of science. The dynamics of this systems is a source of well-known numerous global problems. Its possibly effective solution needs adequate knowledge about the system. For this reason, counteraction to “balkanization” of science is of great practical importance. And this counteraction should comprise not only development of “transboundary” sciences (such as biochemistry or social psychology) but also establishing and developing links between very distant disciplines. This text is intended as a contribution to linking social and engineering sciences. The notion of design plays the central role in this text. Its meaning in the engineering sciences. The notion of utopia has been chosen as a partial counterpart to the term of engineering design. This notion was defined using a concept of possible world – taken from modal logic. It encompasses two ideas: this of design and that of prediction, It is claimed that we need many utopias and that their plurality is of fundamental importance for protecting us against the threats of utopianism. The paper suggests that social utopias can play a heuristic role in engineering design (particularly in the initial phase of defining technological problems), and – on the other hand – that the theory of engineering design can be supportive for, badly needed, development of methodology of utopias creation.


2019 ◽  
Author(s):  
Qingyi Yang ◽  
Woodrow W. Burchett ◽  
Gregory S. Steeno ◽  
David L. Mobley ◽  
Xinjun Hou

Predicting binding free energy of ligand-protein complexes has been a grand challenge in the field of computational chemistry since the early days of molecular modeling. Multiple computational methodologies exist to predict ligand binding affinities. Pathway-based Free Energy Perturbation (FEP), Thermodynamic Integration (TI) as well as Linear Interaction Energy (LIE), and Molecular Mechanics-Poisson Boltzmann/Generalized Born Surface Area (MM-PBSA/GBSA) have been applied to a variety of biologically relevant problems and achieved different levels of predictive accuracy. Recent advancements in computer hardware and simulation algorithms of molecular dynamics and Monte Carlo sampling, as well as improved general force field parameters, have made FEP a principal approach for calculating the free energy differences, especially when calculating the host-guest binding affinity differences upon chemical modification.<br><br>Since the FEP-calculated binding free energy difference, denoted ddGFEP only characterizes the difference in free energy between pairs of ligands or complexes, not the absolute binding free energy value of each individual host-guest system, denoted dG, we examine two rarely asked questions in FEP application:<br><br>1) Which values would be more appropriate as the prediction to assess the ligands prospectively: the calculated pairwise free energy differences, ddGFEP, or the estimated absolute binding energies, d^G, transformed from ddGFEP?<br>2) In the situation where only a limited number of ligand pairs can be calculated in FEP, can the perturbation pairs be optimally selected with respect to the reference ligand(s) to maximize the prediction precision?<br><br>These two questions underline the viability of an often-neglected assumption in pairwise comparisons: that the pairwise value is sufficient to make a quantitative and reliable characterization of an individual ligand's properties or activities. This implicit assumption would be true if there was no error in each pairwise calculation. Recently pair designs such as multiple pathways or cycle closure analyses provided calculation error estimation but did not address the statistical impact of the two questions above. The error impact is fully minimized by conducting an exhaustive study that obtains all NC2 = N(N-1)/2 pairs for a set N molecules; more if there is directionality (dGi,j != dGj,i). Obviously, that study design is impractical and unnecessary. Thus, we desire to collect the right amount of data that is 1) feasibly attainable, 2) topologically sufficient, and 3) mathematically synthesizable so that we can mitigate inherent calculation errors and have higher confidence in our conclusions.<br><br>The significance of above questions can be illustrated by a motivating example shown in Figure 1 and Table 1, which considers two different perturbation graph designs for 20 ligands with the same number of FEP perturbation pairs, 19, and the same reference, Ligand 1. These two designs reached different conclusions in rank ordering ligand potencies due to errors inherent in the FEP derived estimates. Based on design A, ligands 5, 7, 14, 15 would be selected as the best four (20%) picks since those d^G estimates are the most favorable. Design B would yield ligands 5, 12, 18, 19 as best for the same reason. Without knowing the true value, dGTrue of the other 19 ligands, we lack a prospective metric to assess which design could be more precise even though, retrospectively, we know that both designs had reasonably good agreement with the true values, as measured through correlation and error metrics. However, the top picks from neither design were consistent with the true top four ligands, which are ligands 7, 10, 12, 18. Yet, if all of the 20C2 =190 pairs could have been calculated as listed in the last column of Table 1, the best four ligands would have been correctly identified. Additionally, the other metrics included in Table 1 were significantly improved. However, as mentioned above, calculating all possible pairs, or even a significant fraction of all possible pairs, is unlikely in practice, especially when number of molecules are large. Given this restriction, is it possible to objectively determine whether design A or B will give more precise predictions?<br><br>In this report, we investigated the performance of the calculated ddGFEP values compared to the pairwise differences in least squares derived d^G estimates both analytically and through simulations. Based on our findings, we recommend applying weighted least squares to transforming ddGFEP values into d^G estimates. Second, we investigated the factors that contribute to the precision of the d^G estimates, such as the total number of computed pairs, the selection of computed pairs, and the uncertainty in the computed ddGFEP values. The mean squared error, denoted MSE and Spearman's rank correlation, are used as performance metrics.<br><br>To illustrate, we demonstrated how the structural similarity can be included in design and its potential impact on prediction precision. As in the majority of reported FEP studies on binding affinity prediction, the ddGFEP pairs were selected based on chemical structure similarity. Pairs with small chemical differences are assumed to be more likely to have smaller errors in ddGFEP calculation. Together using the constructed mathematic system and literature examples, we demonstrate that some of pair-selection schemes (designs) are better than the others. To minimize the prediction uncertainty, it is recommended to wisely select design optimality criterion to suit<br>practical applications accordingly.<br>


2019 ◽  
Vol 17 (1) ◽  
pp. e0103 ◽  
Author(s):  
Francisco Alcon ◽  
M. Angeles Fernández-Zamudio ◽  
Erasmo I. López-Becerra ◽  
M. Dolores De-Miguel

The fundamental basis of Spanish citriculture is its varietal composition, which contributes to the existence of a marketing calendar that extends to almost the entire year. As time goes by, the supply of varieties is continuously renewed, requiring significant investments by growers. The guarantee of a quality supply to the markets, on one hand, and the optimal result of the investments made, on the other, require that, in managing the sector, the characteristics determining the survival of the varieties be taken into account. The main purpose of this study was therefore to assess the influence of the attributes affecting the longevity of orange plantations from a technical and commercial point of view. The duration analysis technique applied to the different varieties has been used. The main attributes determining the elimination of a variety were the presence of seeds in the fruit and the tendency towards a decrease in surface size. Permanence- or survival-friendly attributes included the calibre (large size of the variety, within its group) and the price received by farmers. Precocity, frost resistance, commercial quality and resistance to fruit fly did not have the expected level of significance.


We consider applications of the best L1 piecewise monotonic approximation method for the peak estimation of three sets of up to 2500 measurements of Raman, Infrared and Nuclear Magnetic Resonance (NMR)spectra. Peak estimation is an inherent problem of spectroscopy. The location of peaks and their intensities arethe signature of a sample of an organic or an inorganic compound. The diversity and the complexity of our measurements makes it a difficult test of the effectiveness of the method. We find that the method identifies efficientlypeaks and we compare to the results obtained by the analogous least squares calculations. These results havemany similarities and occasionally considerable differences due to both properties of the norms employed in theoptimization calculations and nature of the spectra. Our results may be helpful to subject analysts as part of theinformation on which decisions will be made for estimating peaks in sequences of spectra and to the developmentof new algorithms that are particularly suitable for peak estimation calculations.


2010 ◽  
Vol 163-167 ◽  
pp. 2365-2368 ◽  
Author(s):  
Shu Ling Qiao ◽  
Zhi Jun Han

In this paper, determinate beam and indeterminate beam with multiple span are optimized by using genetic algorithm, the mathematic model of optimize beam is built and the processing method of constraint conditions is given. The examples show that the algorithm could be used for optimizing determinate structure, and also optimizing indeterminate structure. Compared to the linear approximation method, genetic algorithm has advantages of being simple, easy, fast convergence and has no use for changing the objective function and constraint conditions to linearity or other processing. Its results agree with linear approximation method’s. It is the other method that can be adopt in engineering field.


2013 ◽  
Vol 2013 ◽  
pp. 1-9
Author(s):  
Xiuli Wang

We consider the testing problem for the parameter and restricted estimator for the nonparametric component in the additive partially linear errors-in-variables (EV) models under additional restricted condition. We propose a profile Lagrange multiplier test statistic based on modified profile least-squares method and two-stage restricted estimator for the nonparametric component. We derive two important results. One is that, without requiring the undersmoothing of the nonparametric components, the proposed test statistic is proved asymptotically to be a standard chi-square distribution under the null hypothesis and a noncentral chi-square distribution under the alternative hypothesis. These results are the same as the results derived by Wei and Wang (2012) for their adjusted test statistic. But our method does not need an adjustment and is easier to implement especially for the unknown covariance of measurement error. The other is that asymptotic distribution of proposed two-stage restricted estimator of the nonparametric component is asymptotically normal and has an oracle property in the sense that, though the other component is unknown, the estimator performs well as if it was known. Some simulation studies are carried out to illustrate relevant performances with a finite sample. The asymptotic distribution of the restricted corrected-profile least-squares estimator, which has not been considered by Wei and Wang (2012), is also investigated.


Sign in / Sign up

Export Citation Format

Share Document