scholarly journals Infrared Spectroscopic Characterization of Photoluminescent Polymer Nanocomposites

2015 ◽  
Vol 2015 ◽  
pp. 1-9 ◽  
Author(s):  
Kyle Gipson ◽  
Kathryn Stevens ◽  
Phil Brown ◽  
John Ballato

Organicallycoated inorganic nanoparticles were synthesized to produce photoluminescent nanocomposites based on a polymethyl methacrylate (PMMA) matrix. The nanoparticles comprised organic ligands (acetylsalicylic acid, ASA, and 2-picolinic acid, PA) attached to the lanthanum trifluoride (LaF3) host crystals that were doped with optically active terbium III (Tb3+) and synthesized using solution-based methods. The ligands were employed to functionalize the surface of Tb3+:LaF3nanocrystals to aid in dispersing the nanoparticles. In order to confirm the presence of the constituents within the inorganic-organic system, the nanoparticles were characterized by infrared spectroscopy and energy-dispersive X-ray spectroscopy. Absorption peaks observed from infrared spectroscopy for all the polymer nanocomposites loaded with organic surface treated nanocrystals exhibited peaks that were not present in undoped PMMA but were characteristic of the dopant and the ligand.

2011 ◽  
Vol 2011 ◽  
pp. 1-8 ◽  
Author(s):  
Kyle Gipson ◽  
Brett Ellerbrock ◽  
Kathryn Stevens ◽  
Phil Brown ◽  
John Ballato

Inorganic nanoparticles doped with optically active rare-earth ions and coated with organic ligands were synthesized in order to create fluorescent polymethyl methacrylate (PMMA) nanocomposites. Two different aromatic ligands (acetylsalicylic acid, ASA and 2-picolinic acid, PA) were utilized in order to functionalize the surface of Tb3+ : LaF3nanocrystals. The selected aromatic ligand systems were characterized using infrared spectroscopy, thermal analysis, rheological measurements, and optical spectroscopy. Nanoparticles producedin situwith the PMMA contained on average 10 wt% loading of Tb3+ : LaF3at a 6 : 1 La : Tb molar ratio and ~7 wt% loading of 4 : 1 La : Tb molar ratio for the PA and ASA systems, respectively. Measured diameters ranged from457±176 nm to150±105 nm which is indicative that agglomerates formed during the synthesis process. Both nanocomposites exhibited the characteristic Tb3+emission peaks upon direct ion excitation (350 nm) and ligand excitation (PA : 265 nm and ASA : 275 nm).


2009 ◽  
Vol 59 (12) ◽  
Author(s):  
Mihaela Flondor ◽  
Ioan Rosca ◽  
Doina Sibiescu ◽  
Mihaela-Aurelia Vizitiu ◽  
Daniel-Mircea Sutiman ◽  
...  

In this paper the synthesis and the study of some complex compounds of Fe(III) with ligands derived from: 2-(4-chloro-phenylsulfanyl)-1-(2-hydroxy-3,5-diiodo-phenyl)-ethanone (HL1), 1-(3,5-dibromo-2-hydroxy-phenyl)-2-phenylsulfanyl-ethanone(HL2), and 2-(4-chloro-phenylsulfanyl)-1-(3,5-dibromo-2-hydroxy-phenyl)-ethanone (HL3) is presented. The characterization of these complexes is based on method as: the elemental chemical analysis, IR and ESR spectroscopy, M�ssbauer, the thermogravimetric analysis and X-ray diffraction. Study of the IR and chemical analysis has evidenced that the precipitates form are a complexes and the combination ratio of M:L is 1:2. The central atoms of Fe(III) presented paramagnetic properties and a octaedric hybridization. Starting from this precipitation reactions, a method for the gravimetric determination of Fe(III) with this organic ligands has been possible. Based on the experimental data on literature indications, the structural formulae of the complex compounds are assigned.


Molbank ◽  
10.3390/m1227 ◽  
2021 ◽  
Vol 2021 (2) ◽  
pp. M1227
Author(s):  
Bibi Hanifa ◽  
Muhammad Sirajuddin ◽  
Zafran Ullah ◽  
Sumera Mahboob ◽  
See Mun Lee ◽  
...  

The synthesis and spectroscopic characterization of the glutaric acid-amide derivative, 2,4-Cl2C6H3N(H)C(=O)(CH2)3C(=O)OH (1), are described. The X-ray crystal structure determination of (1) shows the backbone of the molecule to be kinked about the methylene-C–N(amide) bond as seen in the C(p)–N–C(m)–C(m) torsion angle of −157.0(2)°; m = methylene and p = phenyl. An additional twist in the molecule is noted between the amide and phenyl groups as reflected in the C(m)–N–C(p)–C(p) torsion angle of 138.2(2)°. The most prominent feature of the molecular packing is the formation of supramolecular tapes assembled through carboxylic acid-O–H…O(carbonyl) and amide-N–H…O(amide) hydrogen bonding.


Polymers ◽  
2019 ◽  
Vol 11 (4) ◽  
pp. 721 ◽  
Author(s):  
Jorge A. Ramírez-Gómez ◽  
Javier Illescas ◽  
María del Carmen Díaz-Nava ◽  
Claudia Muro-Urista ◽  
Sonia Martínez-Gallegos ◽  
...  

Atrazine (ATZ) is an herbicide which is applied to the soil, and its mechanism of action involves the inhibition of photosynthesis. One of its main functions is to control the appearance of weeds in crops, primarily in corn, sorghum, sugar cane, and wheat; however, it is very toxic for numerous species, including humans. Therefore, this work deals with the adsorption of ATZ from aqueous solutions using nanocomposite materials, synthesized with two different types of organo-modified clays. Those were obtained by the free radical polymerization of 4-vinylpyridine (4VP) and acrylamide (AAm) in different stoichiometric ratios, using tetrabutylphosphonium persulfate (TBPPS) as a radical initiator and N,N′-methylenebisacrylamide (BIS) as cross-linking agent. The structural, morphological, and textural characteristics of clays, copolymers, and nanocomposites were determined through different analytical and instrumental techniques, i.e., X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), and thermogravimetric analysis (TGA). Adsorption kinetics experiments of ATZ were determined with the modified and synthesized materials, and the effect of the ratio between 4VP and AAm moieties on the removal capacities of the obtained nanocomposites was evaluated. Finally, from these sets of experiments, it was demonstrated that the synthesized nanocomposites with higher molar fractions of 4VP obtained the highest removal percentages of ATZ.


2007 ◽  
Vol 5 (1) ◽  
pp. 169-176 ◽  
Author(s):  
Abdülhadi Baykal ◽  
Yüksel Köseoğlu ◽  
Mehmet Şenel

AbstractHeating hydrous manganese (II) hydroxide gel at 85 °C for 12 hours produces Mn3O4 nanoparticles. They were characterized by X-ray powder diffraction (XRD) and infrared spectroscopy (FTIR). The particle size estimated from the SEM and X-ray peak broadening is approximately 32 nm, showing them to be nanocrystalline. EPR measurements confirm a typical Mn2+signal with a highly resolved hyperfine structure.


2010 ◽  
Vol 65 (1) ◽  
pp. 90-94 ◽  
Author(s):  
Thomas Harmening ◽  
Rainer Pöttgen

Samples of EuRu4B4 and of the new boride EuRuB4 were prepared from europium, RuB, and RuB4 precursor alloys, respectively, in sealed tantalum tubes in an induction furnace. EuRu4B4 crystallizes with the LuRu4B4 structure, a = 748.1(1), c = 1502.3(4) pm. The structure of EuRuB4 was refined on the basis of X-ray diffractometer data: Pbam, a = 599.7(1), b = 1160.7(3), c = 358.06(7) pm, wR2 = 0.0691, 474 F2 values, and 38 variables. The four crystallographically independent boron sites build up layers which consist of almost regular pentagons and heptagons which sandwich the ruthenium and europium atoms, respectively. Within the two-dimensional [B4] networks each boron atom has a slightly distorted trigonal-planar boron coordination with B-B distances in the range 172 - 186 pm. Temperature-dependent 151Eu Mössbauer spectra show stable trivalent europium for EuRu4B4 and EuRuB4


Sign in / Sign up

Export Citation Format

Share Document