scholarly journals Stability of an HIV/AIDS Treatment Model with Different Stages

2015 ◽  
Vol 2015 ◽  
pp. 1-9 ◽  
Author(s):  
Hai-Feng Huo ◽  
Rui Chen

An HIV/AIDS treatment model with different stages is proposed in this paper. The stage of the HIV infection is divided into two stages, that is, HIV-positive in the asymptomatic stage of HIV infection and HIV-positive individuals in the pre-AIDS stage. The fact that some individuals with HIV-positive individuals after the treatment can be transformed into the compartment of HIV-positive individuals in the asymptomatic stage of HIV infection, the compartment of HIV-positive individuals in the pre-AIDS stage, or the compartment of individuals with full-blown AIDS is also considered. Mathematical analyses establish the idea that the global dynamics of the HIV/AIDS model are determined by the basic reproduction numberR0. The disease-free equilibrium is globally asymptotically stable ifR0<1. The endemic equilibrium is globally asymptotically stable ifR0>1for a special case. Numerical simulations are also conducted to support the analytic results.

2012 ◽  
Vol 2012 ◽  
pp. 1-15 ◽  
Author(s):  
Hai-Feng Huo ◽  
Na-Na Song

A more realistic two-stage model for binge drinking problem is introduced, where the youths with alcohol problems are divided into those who admit the problem and those who do not admit it. We also consider the direct transfer from the class of susceptible individuals towards the class of admitting drinkers. Mathematical analyses establish that the global dynamics of the model are determined by the basic reproduction number,R0. The alcohol-free equilibrium is globally asymptotically stable, and the alcohol problems are eliminated from the population ifR0<1. A unique alcohol-present equilibrium is globally asymptotically stable ifR0>1. Numerical simulations are also conducted in the analytic results.


2012 ◽  
Vol 2012 ◽  
pp. 1-13 ◽  
Author(s):  
A. M. Elaiw

We investigate the global dynamics of an HIV infection model with two classes of target cells and multiple distributed intracellular delays. The model is a 5-dimensional nonlinear delay ODEs that describes the interaction of the HIV with two classes of target cells, CD4+T cells and macrophages. The incidence rate of infection is given by saturation functional response. The model has two types of distributed time delays describing time needed for infection of target cell and virus replication. This model can be seen as a generalization of several models given in the literature describing the interaction of the HIV with one class of target cells, CD4+T cells. Lyapunov functionals are constructed to establish the global asymptotic stability of the uninfected and infected steady states of the model. We have proven that if the basic reproduction numberR0is less than unity then the uninfected steady state is globally asymptotically stable, and ifR0>1then the infected steady state exists and it is globally asymptotically stable.


CAUCHY ◽  
2021 ◽  
Vol 6 (4) ◽  
pp. 188-199
Author(s):  
Ummu Habibah

We had constructed mathematical model of HIV/AIDS with seven compartments. There were two different stages of infection and susceptible subpopulations. Two stages in infection subpopulation were an HIV-positive with consuming ARV such that this subpopulation can survive longer and an HIV-positive not consuming ARV.  The susceptible subpopulation was divided into two, uneducated and educated susceptible subpopulations.  The transmission coefficients from educated and uneducated subpopulations to infection stages were  where  ((  and ) (  and )) In this paper, we consider the case of  and  were zero.  We investigated local stability of the model solutions according to the basic reproduction number as a threshold of disease transmission. The disease-free and endemic equilibrium points were locally asymptotically stable when  and  respectively. To support the analytical results, numerical simulation was conducted.


2013 ◽  
Vol 2013 ◽  
pp. 1-11 ◽  
Author(s):  
Yakui Xue ◽  
Tiantian Li

We study a delayed SIR epidemic model and get the threshold value which determines the global dynamics and outcome of the disease. First of all, for anyτ, we show that the disease-free equilibrium is globally asymptotically stable; whenR0<1, the disease will die out. Directly afterwards, we prove that the endemic equilibrium is locally asymptotically stable for anyτ=0; whenR0>1, the disease will persist. However, for anyτ≠0, the existence conditions for Hopf bifurcations at the endemic equilibrium are obtained. Besides, we compare the delayed SIR epidemic model with nonlinear incidence rate to the one with bilinear incidence rate. At last, numerical simulations are performed to illustrate and verify the conclusions.


2014 ◽  
Vol 2014 ◽  
pp. 1-14 ◽  
Author(s):  
Qilin Sun ◽  
Lequan Min

This paper studies a modified human immunodeficiency virus (HIV) infection differential equation model with a saturated infection rate. It is proved that if the basic virus reproductive numberR0of the model is less than one, then the infection-free equilibrium point of the model is globally asymptotically stable; ifR0of the model is more than one, then the endemic infection equilibrium point of the model is globally asymptotically stable. Based on the clinical data from HIV drug resistance database of Stanford University, using the proposed model simulates the dynamics of the two groups of patients’ anti-HIV infection treatment. The numerical simulation results are in agreement with the evolutions of the patients’ HIV RNA levels. It can be assumed that if an HIV infected individual’s basic virus reproductive numberR0<1then this person will recover automatically; if an antiretroviral therapy makes an HIV infected individual’sR0<1, this person will be cured eventually; if an antiretroviral therapy fails to suppress an HIV infected individual’s HIV RNA load to be of unpredictable level, the time that the patient’s HIV RNA level has achieved the minimum value may be the starting time that drug resistance has appeared.


2020 ◽  
Vol 2020 (1) ◽  
Author(s):  
Zhimin Chen ◽  
Xiuxiang Liu ◽  
Liling Zeng

Abstract In this paper, a human immunodeficiency virus (HIV) infection model that includes a protease inhibitor (PI), two intracellular delays, and a general incidence function is derived from biologically natural assumptions. The global dynamical behavior of the model in terms of the basic reproduction number $\mathcal{R}_{0}$ R 0 is investigated by the methods of Lyapunov functional and limiting system. The infection-free equilibrium is globally asymptotically stable if $\mathcal{R}_{0}\leq 1$ R 0 ≤ 1 . If $\mathcal{R}_{0}>1$ R 0 > 1 , then the positive equilibrium is globally asymptotically stable. Finally, numerical simulations are performed to illustrate the main results and to analyze thre effects of time delays and the efficacy of the PI on $\mathcal{R}_{0}$ R 0 .


Author(s):  
Chandrashekhara Chandrashekhara ◽  
Sandeepkumar O

Children are innocent victims of HIV infection through vertical transmission. Children who are HIV positive, either through mother-to-child transmission or following sexual abuse, are often not told what could happen to them, and they will certainly be frightened when they experience symptoms.


2021 ◽  
Vol 31 (03) ◽  
pp. 2150050
Author(s):  
Demou Luo ◽  
Qiru Wang

Of concern is the global dynamics of a two-species Holling-II amensalism system with nonlinear growth rate. The existence and stability of trivial equilibrium, semi-trivial equilibria, interior equilibria and infinite singularity are studied. Under different parameters, there exist two stable equilibria which means that this model is not always globally asymptotically stable. Together with the existence of all possible equilibria and their stability, saddle connection and close orbits, we derive some conditions for transcritical bifurcation and saddle-node bifurcation. Furthermore, the global dynamics of the model is performed. Next, we incorporate Allee effect on the first species and offer a new analysis of equilibria and bifurcation discussion of the model. Finally, several numerical examples are performed to verify our theoretical results.


2020 ◽  
Vol 9 (1) ◽  
Author(s):  
Patience Adzordor ◽  
Clement Avoka ◽  
Vitalis Bawontuo ◽  
Silas Agbesi ◽  
Desmond Kuupiel

Abstract Background Sub-Saharan Africa (SSA) homes most of the people living with HIV/AIDS in the world. Adolescents/young people are a vulnerable population and at high risk of HIV infection. Identifying and bridging the research gaps on the disclosure of HIV-positive status among adolescents, particularly to their sexual partners, is essential to inform appropriate policy planning and implementation towards preventing HIV transmission. This study will aim to explore literature and describe the evidence on HIV-positive status disclosure among adolescents in SSA. Methods The framework provided by Arksey and O’Malley’s framework and improved by Levac and colleagues will be used to conduct a scoping review. A keyword search for relevant literature presenting evidence on HIV-positive status disclosure among adolescents in SSA will be conducted in CINAHL, PubMed, Science Direct, Google Scholar, and SCOPUS. Date limitations will be removed, but Boolean terms “AND” and “OR” as well as Medical Subject Headings terms will be included where possible and syntax modified to suit the database during the search. Additional relevant articles will be sought from the reference lists of all included studies using a snowballing method. Two reviewers will independently screen the articles at the abstract and full-text screening phases in order to reduce bias and improve the reliability of this study’s findings. A tabular form will be developed using Microsoft Word and piloted for data extraction. Thematic content analysis will be conducted, and a narrative summary of all relevant outcomes reported. Quality appraisal of the included studies for this proposed study will be performed utilizing the recent mixed methods appraisal tool. Discussion The evidence produced by this review may help inform policy and strategies to reduce the incidence of HIV infection among adolescents and improve social support for adolescents living with HIV/AIDS in SSA. It may also reveal literature gaps to guide future researches to further inform HIV policies for adolescents in SSA. Platforms such as peer review journals, policy briefs, and conferences will be used to disseminate this study’s findings.


Mathematics ◽  
2018 ◽  
Vol 6 (12) ◽  
pp. 328 ◽  
Author(s):  
Yanli Ma ◽  
Jia-Bao Liu ◽  
Haixia Li

In this paper, an SIQR (Susceptible, Infected, Quarantined, Recovered) epidemic model with vaccination, elimination, and quarantine hybrid strategies is proposed, and the dynamics of this model are analyzed by both theoretical and numerical means. Firstly, the basic reproduction number R 0 , which determines whether the disease is extinct or not, is derived. Secondly, by LaSalles invariance principle, it is proved that the disease-free equilibrium is globally asymptotically stable when R 0 < 1 , and the disease dies out. By Routh-Hurwitz criterion theory, we also prove that the disease-free equilibrium is unstable and the unique endemic equilibrium is locally asymptotically stable when R 0 > 1 . Thirdly, by constructing a suitable Lyapunov function, we obtain that the unique endemic equilibrium is globally asymptotically stable and the disease persists at this endemic equilibrium if it initially exists when R 0 > 1 . Finally, some numerical simulations are presented to illustrate the analysis results.


Sign in / Sign up

Export Citation Format

Share Document