scholarly journals The Effects of Nonuniform Illumination on the Electrical Performance of a Single Conventional Photovoltaic Cell

2015 ◽  
Vol 2015 ◽  
pp. 1-10 ◽  
Author(s):  
Damasen Ikwaba Paul ◽  
Mervyn Smyth ◽  
Aggelos Zacharopoulos ◽  
Jayanta Mondol

Photovoltaic (PV) concentrators are a promising approach for lowering PV electricity costs in the near future. However, most of the concentrators that are currently used for PV applications yield nonuniform flux profiles on the surface of a PV module which in turn reduces its electrical performance if the cells are serially connected. One way of overcoming this effect is the use of PV modules with isolated cells so that each cell generates current that is proportional to the energy flux absorbed. However, there are some cases where nonuniform illumination also exists in a single cell in an isolated cells PV module. This paper systematically studied the effect of nonuniform illumination on various cell performance parameters of a single monocrystalline standard PV cell at low and medium energy concentration ratios. Furthermore, the effect of orientation, size, and geometrical shapes of nonuniform illumination was also investigated. It was found that the effect of nonuniform illumination on various PV cell performance parameters of a single standard PV cell becomes noticeable at medium energy flux concentration whilst the location, size, and geometrical shape of nonuniform illumination have no effect on the performance parameters of the cell.

2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Marwa S. Salem ◽  
Omar M. Saif ◽  
Ahmed Shaker ◽  
Mohamed Abouelatta ◽  
Abdullah J. Alzahrani ◽  
...  

In this work, an optimization of the InGaP/GaAs dual-junction (DJ) solar cell performance is presented. Firstly, a design for the DJ solar cell based on the GaAs tunnel diode is provided. Secondly, the used device simulator is calibrated with recent experimental results of an InGaP/GaAs DJ solar cell. After that, the optimization of the DJ solar cell performance is carried out for two different materials of the top window layer, AlGaAs and AlGaInP. For AlGaAs, the optimization is carried out for the following: aluminum (Al) mole fraction, top window thickness, top base thickness, and bottom BSF doping and thickness. The electrical performance parameters of the optimized cell are extracted: J SC = 18.23   mA / c m 2 , V OC = 2.33   V , FF = 86.42 % , and the conversion efficiency ( η c ) equals 36.71%. By using AlGaInP as a top cell window, the electrical performance parameters for the optimized cell are J SC = 19.84   mA / c m 2 , V OC = 2.32   V , FF = 83.9 % , and η c = 38.53 % . So, AlGaInP is found to be the optimum material for the InGaP/GaAs DJ cell top window layer as it gives 4% higher conversion efficiency under 1 sun of the standard AM1.5G solar spectrum at 300 K in comparison with recent literature results. All optimization steps and simulation results are carried out using the SLVACO TCAD tool.


2014 ◽  
Vol 472 ◽  
pp. 413-417
Author(s):  
Hai Tao Liu ◽  
Shi Yu Sang ◽  
Fang Lv ◽  
Yong Hui Zhai

This paper gives the electrical performance characteristics of vacuum glass building integrated photovoltaic (BIPV) modules used as roofing system of building markets. Considering materials and structures are totally different from that of traditional PV module. The optimum power rating condition need be evaluated and analyzed to obtain irradiance and temperature dependence. A temperature and irradiance matrix of performance parameters of a BIPV module is given to predict the energy produced by this BIPV product. To define a suitable standard test condition of vacuum glass BIPV module, the electrical performances under different incident angle and sunlight spectrum are also measured and discussed in this paper.


2019 ◽  
Vol 2019 ◽  
pp. 1-15 ◽  
Author(s):  
Damasen Ikwaba Paul

Most concentrating systems that are being used for photovoltaic (PV) applications do not illuminate the PV module uniformly which results in power output reduction. This study investigated the electrical performance of three PV modules with cells connected in different configurations to address nonuniform illumination effect. PV module 1 is the standard module consisting of 11 solar cells connected in series whereas PV module 2 is a proposed design with 11 cells in three groups and each group consists of different cells in series connections. PV module 3 is also a new design with 11 cells in two groups and each group consists of different cells connected in series. The new PV modules were designed in such a way that the effect of nonuniform illumination should affect a group of cells but not the entire PV module, leading to high power output. The PV modules were tested under three different intensities: uniform, low nonuniform, and high nonuniform illumination. When the PV modules were tested at uniform illumination, the total maximum power output of PV module 1 was higher than that of PV module 2 and PV module 3 by about 7%. However, when the PV modules were tested at low nonuniform illumination, the total maximum power output of PV module 2 was higher than that of PV module 1 and PV module 3 by about 4% and 7%, respectively. This difference increased to about 12% for PV module 3 and 17% for PV module 1 when the modules were tested at high nonuniform illumination. Therefore, the best PV module design in addressing nonuniform illumination effect in solar collectors is PV module 2. In practical situation this implies that manufacturers of PV modules should consider designing modules with groups of cells in series connection instead of all cells being connected in series.


Energies ◽  
2020 ◽  
Vol 13 (5) ◽  
pp. 1281 ◽  
Author(s):  
Alok Dayanand ◽  
Muhsin Aykapadathu ◽  
Nazmi Sellami ◽  
Mehdi Nazarinia

This paper presents the experimental investigation of a novel cross-compound parabolic concentrator (CCPC). For the first time, a CCPC module was designed to simultaneously work as an electricity generator and collect the thermal energy present in the module which is generated due to the incident irradiation. This CCPC module consists of two regions: an absorber surface atop the rig and a reflective region below that to reflect the irradiation onto the photovoltaic (PV) cell, coupled together to form an absorptive/reflective CCPC (AR-CCPC) module. A major issue in the use of PV cells is the decrease in electrical conversion efficiency with the increase in cell temperature. This module employs an active cooling system to decrease the PV cell temperature, optimizing the electrical performance and absorbing the heat generated within the module. This system was found to have an overall efficiency of 63%, which comprises the summation of the electrical and thermal efficiency posed by the AR-CCPC module.


2019 ◽  
Vol 9 ◽  
pp. 59-69
Author(s):  
Alok Dhaundiyal ◽  
Divine Atsu

This paper presents the modeling and simulation of the characteristics and electrical performance of photovoltaic (PV) solar modules. Genetic coding is applied to obtain the optimized values of parameters within the constraint limit using the software MATLAB. A single diode model is proposed, considering the series and shunt resistances, to study the impact of solar irradiance and temperature on the power-voltage (P-V) and current-voltage (I-V) characteristics and predict the output of solar PV modules. The validation of the model under the standard test conditions (STC) and different values of temperature and insolation is performed, as well as an evaluation using experimentally obtained data from outdoor operating PV modules. The obtained results are also subjected to comply with the manufacturer’s data to ensure that the proposed model does not violate the prescribed tolerance range. The range of variation in current and voltage lies in the domain of 8.21 – 8.5 A and 22 – 23 V, respectively; while the predicted solutions for current and voltage vary from 8.28 – 8.68 A and 23.79 – 24.44 V, respectively. The measured experimental power of the PV module estimated to be 148 – 152 W is predicted from the mathematical model and the obtained values of simulated solution are in the domain of 149 – 157 W. The proposed scheme was found to be very effective at determining the influence of input factors on the modules, which is difficult to determine through experimental means.


Energies ◽  
2020 ◽  
Vol 13 (22) ◽  
pp. 6157
Author(s):  
Chukwuma Ogbonnaya ◽  
Chamil Abeykoon ◽  
Adel Nasser ◽  
Ali Turan

Thermophotovoltaic (TPV) systems generate electricity without the limitations of radiation intermittency, which is the case in solar photovoltaic systems. As energy demands steadily increase, there is a need to improve the conversion dynamics of TPV systems. Consequently, this study proposes a novel radiation-thermodynamic model to gain insights into the thermodynamics of TPV systems. After validating the model, parametric studies were performed to study the dependence of power generation attributes on the radiator and PV cell temperatures. Our results indicated that a silicon-based photovoltaic (PV) module could produce a power density output, thermal losses, and maximum voltage of 115.68 W cm−2, 18.14 W cm−2, and 36 V, respectively, at a radiator and PV cell temperature of 1800 K and 300 K. Power density output increased when the radiator temperature increased; however, the open circuit voltage degraded when the temperature of the TPV cells increased. Overall, for an 80 W PV module, there was a potential for improving the power generation capacity by 45% if the TPV system operated at a radiator and PV cell temperature of 1800 K and 300 K, respectively. The thermal efficiency of the TPV system varied with the temperature of the PV cell and radiator.


2016 ◽  
Vol 2016 ◽  
pp. 1-10 ◽  
Author(s):  
Jun-Gu Kang ◽  
Jin-Hee Kim ◽  
Jun-Tae Kim

Bifacial BIPV systems have great potential when applied to buildings given their use of a glass-to-glass structure. However, the performance of bifacial solar cells depends on a variety of design factors. Therefore, in order to apply bifacial solar cells to buildings, a bifacial PV module performance analysis should be carried out, including consideration of the various design elements and reflecting a wide range of installation conditions. This study focuses on the performance of a bifacial BIPV module applied to a building envelope. The results here show that the design elements of reflectivity and the transparent space ratio have the greatest impact on performance levels. The distance between the module and the wall had less of an impact on performance. The bifacial BIPV module produced output up to 30% greater than the output of monofacial PV modules, depending on the design elements. Bifacial BIPV modules themselves should have transparent space ratios of at least 30%. When a dark color is used on the external wall with reflectivity of 50% or less, bifacial BIPV modules with transparent space ratios of 40% and above should be used. In order to achieve higher performance through the installation of bifacial BIPV modules, design conditions which facilitate reflectivity exceeding 50% and a transparent space ratio which exceeds 30% must be met.


Crystals ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 753
Author(s):  
Zijian Chen ◽  
Haoyuan Jia ◽  
Yunfeng Zhang ◽  
Leilei Fan ◽  
Haina Zhu ◽  
...  

This paper mainly studied the electrical performance improvement of black silicon photovoltaic (PV) cells and modules. The electrical performance of the cells and modules matched with black silicon was optimized through three different experiments. Firstly, in the pre-cleaning step, the effect of lotion selection on the cell performance was studied. Compared with alkaline lotion, using acidic lotion on black silicon wafer can achieve an efficiency improvement of the black silicon cell by nearly 0.154%. Secondly, the influence of oxygen flux control of the thermal oxidation step on the improvement of cell efficiency was studied. The addition of the thermal oxidation step and its oxygen flux control resulted in an efficiency increase of the black silicon cell of nearly 0.11%. The most optimized volume control of the oxygen flux is at 2200 standard cubic centimeter per minute (SCCM). Finally, in the module packaging process, the selection of components will also greatly affect the performance of the black silicon PV module. The most reasonable selection of components can increase the output power of the black silicon PV module by 6.13 W. In a word, the technical indication of the electrical performance improvement suggested in this study plays an important guiding role in the actual production process.


Sign in / Sign up

Export Citation Format

Share Document