scholarly journals Analogs of LDL Receptor Ligand Motifs in Dengue Envelope and Capsid Proteins as Potential Codes for Cell Entry

2015 ◽  
Vol 2015 ◽  
pp. 1-15 ◽  
Author(s):  
Juan Guevara ◽  
Jaime Romo ◽  
Troy McWhorter ◽  
Natalia Valentinova Guevara

It is established that cell entry of low density lipoprotein particles (LLPs) containing Apo B100 and Apo E is mediated by receptors and GAGs. Receptor ligand motifs, XBBBXXBX, XBBXBX, and ΨBΨXB, and mono- and bipartite NLS sequences are abundant in Apo E and Apo B100 as well as in envelope and capsid proteins of dengue viruses 1–4 (DENV1–4). Synthetic, fluorescence-labeled peptides of sequences in DENV2 envelope protein, and DENV3 capsid that include these motifs were used to conduct a qualitative assessment of cell binding and entry capacity using HeLa cells. DENV2 envelope peptide, Dsp2EP, 0564Gly-Gly0595, was shown to bind and remain at the cell surface. In contrast, DENV3 capsid protein peptide, Dsp3CP, 0002Asn-Gln0028, readily enters HeLa cells and accumulates at discrete loci in the nucleus. FITC-labeled dengue synthetic peptides colocalize with low density lipoprotein-CM-DiI and Apo E-CM-DiI to a degree suggesting that dengue viruses may utilize cell entry pathways used by LLPs.

1998 ◽  
Vol 72 (12) ◽  
pp. 10246-10250 ◽  
Author(s):  
Thomas C. Marlovits ◽  
Christina Abrahamsberg ◽  
Dieter Blaas

ABSTRACT The large family of human rhinoviruses, the main causative agents of the common cold, is divided into the major and the minor group based on receptor specificity. Major group viruses attach to intercellular adhesion molecule 1 (ICAM-1), a member of the immunoglobulin superfamily, whereas minor group viruses use low-density lipoprotein receptors (LDLR) for cell entry. During early attempts aimed at isolating the minor group receptor, we discovered that a protein with virus binding activity was released from HeLa cells upon incubation with buffer at 37°C (F. Hofer, B. Berger, M. Gruenberger, H. Machat, R. Dernick, U. Tessmer, E. Kuechler, and D. Blaas, J. Gen. Virol. 73:627–632, 1992). In light of the recent discovery of several new members of the LDLR family, we reinvestigated the nature of this protein and present evidence for its being derived from the human very-low density lipoprotein receptor (VLDLR). A soluble VLDLR fragment encompassing the eight complement type repeats and representing the N-terminal part of the receptor was then expressed in the baculovirus system; both the shed protein and the recombinant soluble VLDLR bind minor group viruses and inhibit viral infection of HeLa cells in a concentration-dependent manner.


1987 ◽  
Vol 65 (3) ◽  
pp. 252-260 ◽  
Author(s):  
S. P. Tam ◽  
W. C. Breckenridge

The nature of the interaction of high density lipoproteins (HDL), formed during lipolysis of human very low density lipoprotein (VLDL) by perfused rat heart, with subfractions of human plasma HDL was investigated. Perfusate HDL, containing apoliproproteins (apo) E, C-II, and C-III but no apo A-I or A-II, was incubated with a subfraction of HDL (HDL-A) containing apo A-I and A-II, but devoid of apo C-II, C-III, and E. The products of the incubation were resolved by heparin-Sepharose or hydroxylapatite chromatography under conditions which allowed the resolution of the initial HDL-A and perfusate HDL. The fractions were analyzed for apolipoprotein content and lipid composition and assessed for particle size by electron microscopy. Following the incubation, the apo-E-containing lipoproteins were distinct from perfusate HDL since they contained apo A-I as a major component and apo C-II and C-III in reduced proportions. However, the HDL-A fraction contained apo C-II and C-III as major constituents. Associated with these changes in apolipoprotein composition, the apo-E-rich lipoproteins acquired cholesteryl ester from the HDL-A fraction and lost phospholipid to the HDL-A fraction. The HDL-A fraction maintained a low unesterified cholesterol/phospholipid molar ratio (0.23), while the apo-E-containing lipoproteins possessed a high ratio (0.75) characteristic of the perfusate HDL. The particle size of apo-E-containing lipoproteins (138.9 ± 22.5 Å; 1 Å = 0.1 nm) was larger than the initial HDL-A (126.5 ± 17.6 Å) or the new HDL-A-like fraction (120.9 ± 17.4 Å) obtained following incubation with perfusate HDL. It is concluded that incubation of perfusate HDL containing apo E, C-II, and C-III with plasma HDL subfractions results in the acquisition of apo A-I and cholesteryl esters by the apo-E-containing perfusate HDL and the loss of apo C-II, C-III, and phospholipid to the plasma HDL-A fraction. The process does not appear to be due to fusion of the particles, since the apo-E-containing lipoproteins maintain a cholesterol/phospholipid ratio distinct from the HDL-A fraction. The data provide evidence for a potential mechanism for the formation of HDL-E, an apo-E-containing lipoprotein of HDL size and density, through lipolysis of VLDL.


1985 ◽  
Vol 226 (3) ◽  
pp. 715-721 ◽  
Author(s):  
F M Van't Hooft ◽  
A Van Tol

O-(4-Diazo-3-[125I]iodobenzoyl)sucrose ([125I]DIBS), a novel labelling compound specifically designed to study the catabolic sites of serum proteins [De Jong, Bouma, & Gruber (1981) Biochem. J. 198, 45-51], was applied to study the tissue sites of degradation of serum lipoproteins. [125I]DIBS-labelled apolipoproteins (apo) E and A-I, added in tracer amounts to rat serum, associate with high-density lipoproteins (HDL) just like conventionally iodinated apo E and A-I. No difference is observed between the serum decays of chromatographically isolated [125I]DIBS-labelled and conventionally iodinated HDL labelled specifically in either apo E or apo A-I. When these specifically labelled HDLs are injected into fasted rats, a substantial [125I]DIBS-dependent 125I accumulation occurs in the kidneys and in the liver. No [125I]DIBS-dependent accumulation is observed in the kidneys after injection of labelled asialofetuin or human low-density lipoprotein. It is concluded that the kidneys and the liver are important sites of catabolism of rat HDL apo E and A-I.


2000 ◽  
Vol 151 (1) ◽  
pp. 158 ◽  
Author(s):  
Y. Huang ◽  
W.J. Brecht ◽  
X.Q. Liu ◽  
Y. Wang ◽  
J.M. Taylor ◽  
...  

1978 ◽  
Vol 84 (2) ◽  
pp. 366-373 ◽  
Author(s):  
Nicola Di Ferrante ◽  
Patricia V. Donnelly ◽  
Daniela T. Di Ferrante ◽  
Salvatore Toma ◽  
Antonio M. Gotto

1998 ◽  
Vol 138 (1) ◽  
pp. 147-152 ◽  
Author(s):  
Jacob George ◽  
Arnon Afek ◽  
Boris Gilburd ◽  
Hana Levkovitz ◽  
Aviv Shaish ◽  
...  

Nutrients ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 4381
Author(s):  
Masaharu Urakaze ◽  
Chikaaki Kobashi ◽  
Yukihiro Satou ◽  
Kouichi Shigeta ◽  
Masahiro Toshima ◽  
...  

Astaxanthin (ASTX) is an antioxidant agent. Recently, its use has been focused on the prevention of diabetes and atherosclerosis. We examined the effects of astaxanthin supplementation for 12 weeks on glucose metabolism, glycemic control, insulin sensitivity, lipid profiles and anthropometric indices in healthy volunteers including subjects with prediabetes with a randomized, placebo-controlled trial. Methods: We enrolled 53 subjects who met our inclusion criteria and administered them with 12 mg astaxanthin or a placebo once daily for 12 weeks. Subsequently, their HbA1c levels, lipid profiles and biochemical parameters were determined. The participants also underwent a 75 g oral glucose tolerance test (OGTT), vascular endothelial function test and measurement of the visceral fat area. Results: After astaxanthin supplementation for 12 weeks, glucose levels after 120 min in a 75 g OGTT significantly decreased compared to those before supplementation. Furthermore, the levels of HbA1c (5.64 ± 0.33 vs. 5.57 ± 0.39%, p < 0.05), apo E (4.43 ± 1.29 vs. 4.13 ± 1.24 mg/dL, p < 0.05) and malondialdehyde-modified low-density lipoprotein (87.3 ± 28.6 vs. 76.3 ± 24.6 U/L, p < 0.05) were also reduced, whereas total cholesterol (TC), triglyceride (TG) and high-density lipoprotein-C (HDL-C) levels were unaltered. The Matuda index, which is one of the parameters of insulin resistance, was improved in the ASTX group compared to that before supplementation. Conclusions: our results suggest that ASTX may have preventive effects against diabetes and atherosclerosis and may be a novel complementary treatment option for the prevention of diabetes in healthy volunteers, including subjects with prediabetes, without adverse effects.


1993 ◽  
Vol 39 (7) ◽  
pp. 1427-1432 ◽  
Author(s):  
B Salzer ◽  
A Stavljenić ◽  
G Jürgens ◽  
M Dumić ◽  
A Radica

Abstract We assessed the effect of particular apolipoprotein (apo) E phenotypes, lipoprotein(a) [Lp(a)], and other lipoproteins on the development of dyslipoproteinemia in 450 patients with type I diabetes, ages 13-14 years. The control group consisted of 450 healthy school children of both sexes, ages 13-14 years. Both groups were found to be normolipidemic, but the concentration of Lp(a) was significantly (P &lt; 0.05) higher in the diabetic children than in the control group. Apo E 3/2 and apo E 4/4 phenotypes were more frequent in the group of diabetics. Diabetics with the apo E 3/3 phenotype had higher concentrations of very-low-density lipoprotein (VLDL) and Lp(a), and lower concentrations of low-density lipoprotein (LDL) than the apo E 3/3 nondiabetics. For apo E 3/2 phenotypes, total cholesterol, LDL cholesterol, LDL, apo A-I, and Lp(a) concentrations were higher in the diabetic children than in the control group; for apo E 4/3 phenotypes, this was true for triglycerides and VLDL cholesterol. The distribution of Lp(a) lipoprotein concentrations between 0.01 and &gt; 0.5 g/L indicated a more frequent occurrence of higher Lp(a) values in diabetic children than in the control group. Results of this study indicate that an increased concentration of Lp(a) lipoprotein and apo E 3/2 and apo E 4/3 phenotypes contribute to the expression of dyslipoproteinemia in type I diabetes in childhood.


Sign in / Sign up

Export Citation Format

Share Document