scholarly journals Production of Oxidative and Hydrolytic Enzymes by Coprinus cinereus (Schaeff.) Gray from Sisal Wastes Supplemented with Cow Dung Manure

2015 ◽  
Vol 2015 ◽  
pp. 1-9 ◽  
Author(s):  
Prosper Raymond ◽  
Anthony Manoni Mshandete ◽  
Amelia Kajumulo Kivaisi

The activity of oxidative and hydrolytic enzymes of the edible and medicinal white rot fungi Coprinus cinereus (Schaeff.) Gray mushroom was observed during mycelia growth and fruiting body development in solid substrate fermentation using sisal waste fractions amended with cow dung manure as supplement. Laccase had the highest titre value among the five detected enzymes. Its activity was higher during mycelia growth compared to fruiting phase, with 10% supplemented substrate formulation unmixed sisal leaf decortication residues [abbreviated SL : SB (100 : 0)] displaying the highest activity of 39.45±12.05 Ug−1. Lignin peroxidase (LiP) exhibited a characteristic wave-like pattern with the highest peaks found either during full mycelia colonization or soon after first flush harvest; the highest activity of 1.93±0.62 Ug−1 was observed on unsupplemented SL : SB (100 : 0) substrate formulation during mycelia colonization. For hydrolytic enzymes, the highest carboxymethyl cellulase (CMCase) activity of 2.03±0.70 Ug−1 was observed on 20% supplemented SL : SB (0 : 100) after first flush; that of pectinase (1.90±0.32 Ug−1) was revealed after third flush on 10% supplemented SL : SB (0 : 100) substrate formulation while 10% supplemented SL : SB (25 : 75) exhibited the highest xylanase activity (1.23±0.12 Ug−1) after first flush. These findings show that the activities of both oxidative and hydrolytic enzymes were regulated in line with developmental phase of growth of Coprinus cinereus.

2015 ◽  
Vol 5 (1) ◽  
pp. 526-533 ◽  
Author(s):  
María Daniela Rodríguez ◽  
Mónica Lucrecia Barchuk ◽  
María Isabel Fonseca ◽  
Pedro Darío Zapata ◽  
Laura Lidia Villalba

There is a need to explore lignocellulosic materials to select an adequate substrate for lignocellulolytic enzyme production. Utilization of some residues provides an opportunity to produce high yields of lignocellulolytic enzymes in a simple medium. The aim of the present work was to study the effect of wood flour as a carbon source on the cellulolytic and xylanolytic secretion of white-rot fungi native from Misiones. Fungi were incubated with 5 g Pinus sp. wood flour/L and 5 g Eucalyptus sp. wood flour/L as carbon sources in a reciprocal shaker at 80 rpm and 29ºC for 15 days. Total cellulase, endo-1,4-β-glucanase, β-glucosidase, cellobiohydrolase and endo-1,4-β-xylanase activities were determined in culture supernatants. Tested fungi showed high endo-1,4-β-xylanase activity between 6 and 12 days. Total cellulase showed the highest activity between 12-15 culture days. The test did not show differences among Pycnoporus sanguineus LBM 014, P. sanguineus BAFC 2126, Irpex lacteus BAFC 1171, Irpex sp. LBM 032, Irpex sp. LBM 034 and Lenzites elegans BAFC 2127, showing the highest activity for this group regard the others strains. I. lacteus BAFC 1171 was the strain with major endo-1,4-β-glucanase activity at day 9 (847 U/L). In the case of β-glucosidase and cellobiohydrolase, P. sanguineus BAFC 2126 was the strain with the highest activity between 12-15 culture days (18 U/L), and between 9-15 culture days (39 U/L), respectively. Wood flour proved to be a suitable carbon source to produce hydrolytic enzymes. I. lacteus BAFC 1171 and P. sanguineus BAFC 2126 have potential for cellulase production whereas P. sanguineus LBM 008 is a good endo-1,4-β-xylanase producer.


2016 ◽  
Vol 3 (02) ◽  
Author(s):  
Cornelius Damar Hanung ◽  
Ronald Osmond ◽  
Hendro Risdianto ◽  
Sri Harjati Suhardi ◽  
Tjandra Setiadi

White rot fungi of Marasmius sp. is a fungus which produce laccase in high activity. Laccase is one of the ligninolityc enzymes that capable to degrade lignin. This ability can be used for the pretreatment of lignocellulosic materials in the bioethanol production. Laccase was produced in flask by batch process using Solid State Fermentation (SSF). The optimisation was conducted by statistically of full factorial design. The particle size, moisture content, and Cu concentration were investigated in this study. Rice straw was used as solid substrate and the glycerol was used as the carbon sources in modified Kirk medium. The results showed that particle size of rice straw did not affect significantly to the enzyme activity. The highest laccase activity of 4.45 IU/g dry weight was obtained at the moisture content of 61% and Cu concentration of 0.1 mM.Keywords: laccase, Marasmius sp., optimisation, rice straw, solid state fermentation ABSTRAKJamur pelapuk putih, Marasmius sp. merupakan jamur yang menghasilkan enzim lakase dengan aktivitas tinggi. Lakase merupakan enzim ligninolitik yang dapat mendegradasi lignin. Kemampuan ini dapat digunakan untuk proses pengolahan awal bahan lignoselulosa pada pembuatan bioetanol. Produksi lakase dilakukan dalam labu dengan modus batch menggunakan fermentasi kultur padat. Optimisasi produksi enzim lakase dengan metode fermentasi padat dilakukan dengan  rancangan percobaan faktorial penuh. Pengaruh ukuran partikel, kelembapan, dan konsentrasi Cu diuji dengan medium penyangga jerami dengan menambahkan gliserol dalam medium Kirk termodifikasi sebagai sumber karbon. Penelitian ini menunjukkan bahwa ukuran jerami tidak berpengaruh signifikan terhadap aktivitas enzim. Aktivitas enzim lakase maksimum terjadi pada saat kelembapan 61% dan konsentrasi Cu 0,1 mM dengan aktivitas enzim lakase/berat kering tertinggi mencapai 4,45 IU/g.Kata kunci: lakase, Marasmius sp., optimisasi, jerami, fermentasi kultur padat


Author(s):  
Aydan Atalar ◽  
Nurcan Çetinkaya

The efforts to break down the lignocellulosic complex found in the cell wall of straws, besides digestible cellulose and hemicellulose by rumen fermentation, improvement of straw digestibility by the degradation of indigestible lignin fraction of complex by using of biotechnological methods is one of the focus areas of animal nutritionists in recent years. Biological method sare prefer redover other methods due to the environmental friendliness. In the biological treatment methods of lignocellulosic complex, biodiversity of bacteria, enzymes and fungi gives opportunity to select lignin degrading species. Mycobacterium, Arthrobacter and Flavobacterium genre bacteria are used to degrade lignin by bacterial treatment. Lignocellulolytic enzymes isolated from different varieties of fungi are used in enzyme treatment. There are 3 genres of fungus that are white, Brown and soft rot in fungal treatments. Brown rot fungi prefer ably attack cellulose and hemicelluloses, but not lignin. White rot fungi attack the lignin and break up lignol bonds and aromatic ring. White rot fungi break down polysaccharides with hydrolytic enzymes such as cellulase, xylanase, and lignin with oxidative ligninolytic enzymes such as lignin peroxidase and laccase. Because of the fact that the microorganisms that can break down the lignocellulosic materials are the fungi and the cost is low, the application of white rot fungi is possible. In this paper, improvement the lignocellulosic comlex digestibility of straw by biological treatment with the advantage of biodiversity is discussed.


2002 ◽  
Vol 2002 ◽  
pp. 152-152
Author(s):  
A.R. Foroughi ◽  
A. Nikkhah

White- rot fungi have been investigated for biological upgradation of cereal straws into livestock Feed by solid substrate fermentation (Tripathi et al. 1991). Studies showed that pleurotus sajor- cajo(PSC) grew well on wheat straw and improved nutritive value (Leng 1990), due to the presence of wide spectrum of extracellular hydrolytic and oxidative enzymes and high infiltration of the mycelium into the substrate (Kokhreidze et al,1993).The objective of this study was to examine the effect of treated wheat straw by PSC edible fungi on feed intake and daily gain of fattening male lambs.


Author(s):  
Aydan Atalar ◽  
Nurcan Çetinkaya

The efforts to break down the lignocellulosic complex found in the cell wall of straws, besides digestible cellulose and hemicellulose by rumen fermentation, improvement of straw digestibility by the degradation of indigestible lignin fraction of complex by using of biotechnological methods is one of the focus areas of animal nutritionists in recent years. Biological method sare prefer redover other methods due to the environmental friendliness. In the biological treatment methods of lignocellulosic complex, biodiversity of bacteria, enzymes and fungi gives opportunity to select lignin degrading species. Mycobacterium, Arthrobacter and Flavobacterium genre bacteria are used to degrade lignin by bacterial treatment. Lignocellulolytic enzymes isolated from different varieties of fungi are used in enzyme treatment. There are 3 genres of fungus that are white, Brown and soft rot in fungal treatments. Brown rot fungi prefer ably attack cellulose and hemicelluloses, but not lignin. White rot fungi attack the lignin and break up lignol bonds and aromatic ring. White rot fungi break down polysaccharides with hydrolytic enzymes such as cellulase, xylanase, and lignin with oxidative ligninolytic enzymes such as lignin peroxidase and laccase. Because of the fact that the microorganisms that can break down the lignocellulosic materials are the fungi and the cost is low, the application of white rot fungi is possible. In this paper, improvement the lignocellulosic comlex digestibility of straw by biological treatment with the advantage of biodiversity is discussed.


2010 ◽  
Vol 22 (1) ◽  
pp. 31-41 ◽  
Author(s):  
O. Rubilar ◽  
G. Tortella ◽  
M. Cea ◽  
F. Acevedo ◽  
M. Bustamante ◽  
...  

2011 ◽  
Vol 5 (5) ◽  
pp. 1573-1580 ◽  
Author(s):  
Adriana Zilly ◽  
Gisele Cristina dos Santos Bazanella ◽  
Cristiane Vieira Helm ◽  
Caroline Aparecida Vaz Araújo ◽  
Cristina Giatti Marques de Souza ◽  
...  

1988 ◽  
Vol 8 (3) ◽  
pp. 211-223 ◽  
Author(s):  
C. Rolz ◽  
R. De Leon ◽  
M. C. De Arriola

2018 ◽  
Vol 84 (20) ◽  
Author(s):  
Chiaki Hori ◽  
Jill Gaskell ◽  
Dan Cullen ◽  
Grzegorz Sabat ◽  
Philip E. Stewart ◽  
...  

ABSTRACTFungi play a key role cycling nutrients in forest ecosystems, but the mechanisms remain uncertain. To clarify the enzymatic processes involved in wood decomposition, the metatranscriptomics and metaproteomics of extensively decayed lodgepole pine were examined by RNA sequencing (RNA-seq) and liquid chromatography-tandem mass spectrometry (LC-MS/MS), respectively. Followingde novometatranscriptome assembly, 52,011 contigs were searched for functional domains and homology to database entries. Contigs similar to basidiomycete transcripts dominated, and many of these were most closely related to ligninolytic white rot fungi or cellulolytic brown rot fungi. A diverse array of carbohydrate-active enzymes (CAZymes) representing a total of 132 families or subfamilies were identified. Among these were 672 glycoside hydrolases, including highly expressed cellulases or hemicellulases. The CAZymes also included 162 predicted redox enzymes classified within auxiliary activity (AA) families. Eighteen of these were manganese peroxidases, which are key components of ligninolytic white rot fungi. The expression of other redox enzymes supported the working of hydroquinone reduction cycles capable of generating reactive hydroxyl radicals. These have been implicated as diffusible oxidants responsible for cellulose depolymerization by brown rot fungi. Thus, enzyme diversity and the coexistence of brown and white rot fungi suggest complex interactions of fungal species and degradative strategies during the decay of lodgepole pine.IMPORTANCEThe deconstruction of recalcitrant woody substrates is a central component of carbon cycling and forest health. Laboratory investigations have contributed substantially toward understanding the mechanisms employed by model wood decay fungi, but few studies have examined the physiological processes in natural environments. Herein, we identify the functional genes present in field samples of extensively decayed lodgepole pine (Pinus contorta), a major species distributed throughout the North American Rocky Mountains. The classified transcripts and proteins revealed a diverse array of oxidative and hydrolytic enzymes involved in the degradation of lignocellulose. The evidence also strongly supports simultaneous attack by fungal species employing different enzymatic strategies.


2017 ◽  
Vol 16 (11) ◽  
pp. 2581-2588
Author(s):  
Ernesto M. Giorgio ◽  
Maria I. Fonseca ◽  
Andrea L. Morales ◽  
Pedro D. Zapata ◽  
Laura L. Villalba
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document